Bylaw 2020-29 Appendix A

SHIPWAY AREA STRUCTURE PLAN

TOWN OF MILLET

November 2020

#202, 10514 67 Avenue Grande Prairie, AB T8W 0K8 ph: 780.532.5731 fax: 780.532.5824

Table of Contents

1.	INTF	RODUCT	ΓΙΟΝ	3
	1.1.	Purpos	se of the ASP	3
	1.2.	Site Lo	pcation	3
	1.3.	Land O	Dwnership	3
	1.4.	Curren	nt and Adjacent Land Uses	3
	1.5	Purpos	se of the Development	3
	1.2	Site La	nd Use Statistics	1
2.	STA	TUTORY	rramework	5
	2.1.	Town o	of Millet Municipal Development Plan (MDP) #2014-10	5
	2.2.	Interm	nunicipal Development Plan, Town of Millet Bylaw #201706	5
	2.3.	Town o	of Millet Land Use Bylaw #2018-11	5
3.	THE	APPRO	VAL PROCESS	ô
	3.1.	Public	Input	ô
	3.2.	Techni	ical Reports	ô
4.	EXIS	TING CO	ONDITIONS AND DEVELOPMENT CONSIDERATIONS	7
	4.1.	Topogr	raphy and Vegetation Conditions	7
	4.2.	Archeo	ological Concerns	7
	4.3.	Enviror	nmental Concerns	7
	4.4.	Soil Co	onditions	7
	4.5.	Storm	Water Management	7
4	4.6.	Traffic	and Transportation	3
	4.6.3	1. Ci	irculations and Access	3
	4.6.2	2. Tr	raffic Study	3
	4.6.3	3. R	Road Construction	3
4	4.7.	Servici	ing	3
	4.7.2	1. Se	ervicing Objectives	3
	4.7.2	2. Se	ervicing Policies:	Э
	4.7.3	3. Sh	hallow Utilities	Э
4	4.8.	Fire pro	otection	Э

5	IMP	LEMENTATION STRATEGY	. 10
	5.1	Area Structure Plan Approval	. 10
	5.2	Development Staging	. 10
	5.3	Land Use Buffering	. 10
	Figure	1. Site Location Plan	. 11
	Figure	2. Current Adjacent Land Use	. 12
	Figure	3. Revised Site Areas/ Proposed Land Use	. 13
	Figure	4. Existing Features	. 14
	Figure	5. Access Location	. 15
	Figure	6. Existing Utilities	. 16
	Figure	7. Oil and gas facilities	. 17

Appendix A – Land Titles

- Appendix B Historical Resource Application
- Appendix C Geotechnical Report
- Appendix D Stormwater Management Approval
- Appendix E Storm Water Management Report
- Appendix F Addendum to Stormwater Management Report
- Appendix G Traffic Impact Assessment

1. INTRODUCTION

The Town of Millet requires an Area Structure Plan (ASP) for the industrial yard development proposed by Mr. Robert Shipway. For this purpose, Helix Engineering Ltd. has been retained to complete the ASP in compliance with the Town of Millet requirements.

This ASP describes how the subject land will be developed, both in terms of land uses and infrastructure while following the policies, bylaws and standards of the municipality. The plan will illustrate the how the area fits in and connects to the existing and future development within the Town of Millet.

The ASP has been developed in compliance with Section 633 of the Municipal Government Act.

1.1. Purpose of the ASP

The purpose of the Shipway ASP is to provide a plan consistent with other statutory plans and to provide a land use concept for industrial development within the plan area. The plan will establish an implementation strategy based on the development phasing.

1.2. Site Location

The plan area is located within the Town of Millet. The proposed development is entirely contained within the N.W. 1/4 SEC. 28-47-24-W4M as shown in Figure 1 "Site Location Plan". The area is bounded by:

- On the North: Township Road 475 (also known as Highway 616)
- On the West: Range Road 244
- On the East: N.E. ¼ SEC. 28-47-24-W4M
- On the South: S.W. ¼ SEC. 28-47-24-W4M

1.3. Land Ownership

The project area, which is approximately 59.71 ha (147.54 ac), is owned by Shipway Farms Ltd.

1.4. Current and Adjacent Land Uses

Current adjacent land uses are presented in Figure 2. The quarter section contains 3 parcels outside of the balance. There are two country residential parcels with CR zoning, a waste transfer station zoned IN, and the remainder of the quarter zoned IN. Lands to the south are Country Residential.

1.5 Purpose of the Development

The purpose of the development is to provide industrial lands for development within the Town of Millet. Subdivision and development of the land will follow the framework of the ASP. The final lot layout will be subject to subdivision. The development concept is shown on Figure 3. This figure also shows possible phasing of the development. Ultimate phasing will be subject to market demand at the time of subdivision but will generally progress in the manner shown.

Phase 1 is the existing pipe storage yard in the north west corner of the development. Subdivision of this phase is eminent. Phase 2 is also an existing pipe storage yard. The existing storage yard is a discretionary in

the Industrial District of the land use bylaw. As part of this ASP, pipe storage yards area a permitted use. The remainder of the lands are subject to the permitted and discretionary uses.

1.2 Site Land Use Statistics

Total area of the current Shipway development plan is 59.75 ha (147.64 ac). The MGA allows the Town of Millet to require up to ten percent (10%) of the area be dedicated as Municipal Reserve (MR). This can be taken in the form of land, cash in lieu of land, or a combination thereof. This development will require MR in the amount of 5.975 ha. The Town of Millet will require cash in lieu of land for Industrial developments.

Land Use Summary								
	Pt. NW2	28-47-24-W	4M					
Land Use	ha	ас	%					
Net Developable Area	59.75	147.58	100.0%					
Industrial	46.71	115.37	78.2%					
MZoning	46.71	115.37	78.2%					
Roads	5.65	13.96	9.4%					
Road Widening	0.62	1.53	1.0%					
Internal Roads	5.03	12.42	8.4%					
Utilities	7.39	3.51	12.4%					
PUL's	1.42	3.51	2.4%					
Storm Water Management	5.97	14.75	10.0%					

2. STATUTORY FRAMEWORK

2.1. Town of Millet Municipal Development Plan (MDP) #2014-10

The Municipal Development Plan (MDP) outlines the vision and guiding principles forming the framework for future growth and development within the Town. The area considered for this ASP has been annexed since the creation of the MDP. The plan designates the land adjacent to and west of the ASP area as industrial which aligns well with the proposed ASP. Further, the MDP lists seven (7) goals related to industrial development. The ASP aligns with these goals.

2.2. Intermunicipal Development Plan, Town of Millet Bylaw #201706

The Town of Millet and the County of Wetaskiwin created an Intermunicipal Development Plan for the area of the County that abuts and surrounds the Town. The IDP designates the subject lands as a short-term annexation area. This annexation has since occurred. The IDP further designates the subject lands as future industrial. The proposed ASP aligns with IDP.

2.3. Town of Millet Land Use Bylaw #2018-11

The Town of Millet's Land Use Bylaw controls development of lands within the ASP. The existing land use is IN, essentially an industrial holding district for annexation lands. The ASP will designate the lands M-Industrial District. The M district has a list of permitted and discretionary uses. It is intended the area contained in Phase 1 and Phase 2 continue to provide outside storage as a primary use, consistent with the existing development. Subsequent phases will be subject to the terms of the Land Use Bylaw.

3. THE APPROVAL PROCESS

The Town of Millet has Municipal Planning Commission (MPC). The ASP will be reviewed by administration, and then presented to MPC. MPC will recommend adoption to Council. Council will hold a public hearing and adopt the ASP as a bylaw.

Following approval of the ASP, a land use bylaw amendment will re-zone the land to M – Industrial. Following re-zoning, the first and subsequent subdivisions can be processed.

3.1. Public Input

Public input for this project was collected in coordination with the County of Wetaskiwin as the land was in that jurisdiction at the time. Since that time, the land has been annexed by the Town .

• An open house was scheduled with adjacent land owners and other stakeholders 9 people attended, a list of the attendees is enclosed in Appendix F and their comments.

• The open house was held on Thursday February 4, 2016 from (6:00PM to 9:00PM) in the Hugo Witt Room in the Town of Millet Banquet Facilities (5290 45 Avenue). Main issue is they wanted Berms and Trees installed in the M.R. that was previously shown on Figure 3. The Berm on the south side is part of the DP13/159 and will have to be completed prior to any new development. All outstanding conditions on DP13/159 will have to be completed. *All* Berms required including the berm north of Block A will be constructed by client prior to any future development.

The references to MR and DP13/159, while accurate at the time of the meeting, are no longer valid. Buffering between residential and industrial uses remains a concern. This is addressed in Section 5.3.

3.2. Technical Reports

A number of technical reports have been prepared in support of the Area Structure Plan. These reports, as listed below, are included in the Appendices.

- Historical Resources Application (Appendix B)
- Geotechnical and groundwater percolation report (Appendix C)
- Stormwater management (Appendix D and E)
- Traffic Impact Assessment (Appendix F)

4. EXISTING CONDITIONS AND DEVELOPMENT CONSIDERATIONS

4.1. Topography and Vegetation Conditions

The study area is relatively flat. The surface has a gradual natural slope from east to west and north to south as shown on Figure 4, Existing Features.

The Shipway property currently has a storm water retention pond and ditches which convey storm water to the pond for Phase 1and 2. The site mainly consists of a hay field with a rolling terrain. The natural ground surface elevation of the section changes from 761.25 meters in the NE corner of the lot to 748.95 meters in the SW corner. Over approximately 1382 meters, this results in an average slope of 0.89%

4.2. Archeological Concerns

No historical resource has been identified in the development area according to the site visits and correspondence done with Alberta Historical Resource. The result of that correspondence is attached in Appendix B, "Historical Resource Application".

4.3. Environmental Concerns

According to a Joint Economic Development Initiative report which has been prepared by Stantec in March 2011, the subject land is located in Area C and does not contain Environmentally Significant Areas (ESA). At the subdivision stage further analysis may be required by a qualified Geotechnical/ Environmental Engineer to ensure no environmental concerns have occurred on the proposed development. As Shown on Figure 4 the existing transfer station / storage site means a waste management facility, where waste, other than hazardous waste is stored, sorted, processed and is collected and held for removal to another waste management facility. Food establishments cannot be within 300m of the Transfer station unless approvals from the minster has been granted. The 300m radius from the abandoned landfill on the adjacent property to the north is also shown of Figure4. No food establishment can be within the 300m of the abandoned landfill.

4.4. Soil Conditions

A geotechnical evaluation and soil investigation report has been prepared by Shelby Engineering Ltd. for the pond area only and is submitted separately. Based on that report, a layer of topsoil (175mm to 300mm) overlying sand (0.6m below the grade) and silt or clay till (0.9m to 1.0m below the grade) underlain by shallow bedrock exists. Clay shale and sandstone extend to the maximum drilling depth and no particular sloughing or ground water has been observed at less than 2.25 meters depth.

Details of the geotechnical study and the report can be found in Appendix C.

4.5. Storm Water Management

Area Consulting Inc. prepared a design brief for the Storm Water Management (SWM) facilities. The brief is included in Appendix E. The proposed SWM system will consist of surface drainage system directing runoff to ponds using existing and proposed ditches. The pond will be discharge to the existing public ditch at the southwest corner of the site The system is proposed to meet the requirements of the Town of Millet and Alberta Environment and has been previously approved and registered under No. 330707-00-00 and name of Mr. Robert Shipway (Appendix D) for phases 1 and 2.

The system is designed to control the post-development runoff rates to pre-development rates. The SWM facility and performance of the pond is based on runoff rates resulting from a 1 in 100 year design rainfall event.

Alberta Environment notifications and approvals will be required with any expansion or construction of new ponds.

4.6. Traffic and Transportation

A Traffic Impact Assessment (TIA) has been prepared by AREA Consulting Inc. for the proposed development to determine the required treatments to accommodate existing and future traffic volumes pattern with horizon year of 2035. The detailed report can be found in Appendix F.

4.6.1. Circulations and Access

The site is bounded by Highway 616 (TWP RD 475 also known as 45 Avenue) to the north and Range Road 244 to the west as shown on Figure 5. HWY 2A (also known as 50 street) intersects HWY 616 approximately 350 m east of the site, shown as intersection 2 in Figure 5.

The site currently has two driveway accesses from HWY 616. The west access will be removed and the east access will become a public road intersection in the future, aligning with the requirements of the Railside ASP to the north.

The site currently has two driveway accesses from RR 244. The north access will remain as a driveway access to a future lot. The south access will be removed and a new road intersection will be provided.

The developer is willing to contribute one half ½ to the intersection treatment on TWP 475 and the main access in conjunction with Railside development. The developer will also contribute to upgrading RR from intersection 1 (in Figure 5) towards the proposed access on west side of the quarter section.

4.6.2. Traffic Study

Based on the outcome of the traffic study, the proposed intersection of the site road and HWY 616 will be a Type 1A with a stop sign. The study also indicates that traffic growth may warrant the HWY 616 and HWY 2A intersection be upgraded to signals. Details of the analysis and calculation are presented in TIA, attached as Appendix F.

4.6.3. Road Construction

All road design and construction will be in accordance with Town of Millet – Policy #51, Minimum Design Standards. Servicing and Existing Utilities

4.7. Servicing

4.7.1. Servicing Objectives

- Existing utilities are shown in Figure 6. Currently there are deep services available for the proposed site. Offsite levies must be paid prior to connecting to the municipal services.
- To provide appropriate servicing in a rural development context in accordance with the servicing concept.
- To utilize storm water management areas in the plan as amenity areas and maximize visual connections from internal streets.

• To recognize and accommodate existing and future underground utilities.

4.7.2. Servicing Policies:

- Water Service: water supply network is available from the Town of Millet once offsite levies have been paid. There is no need for a new potable water system at this time and will be required once the land gets subdivided in the future.
- Wastewater Services: sanitary services are available from the Town of Millet once offsite levies have been paid. If required, the owner will be responsible for a temporary sanitary facility in accordance with the Alberta Private Sewage Regulation.
- Storm water servicing: as outlined in the past and revised stormwater management report in Appendix E. Alberta Environment will be contacted to obtain new approvals.

4.7.3. Shallow Utilities

The owner will coordinate the servicing of all shallow utilities with the service providers in the area (for example Telus, Fortis, etc.)

- According to the Alberta Energy and Utilities Board, there are no sour gas wells or major oil/gas pipelines in the vicinity of the proposed development. See Figure 7.
- There is a Telus communication network on the north and west border of the quarter section.
- There is a Fortis power line on the north and west side of the quarter section.
- There is Co-op Gas pipeline located in Parts A and B of Phase 1 development, but it is not affected by the new development.

4.8. Fire protection

Fire protection can be provided with a hydrant connection to the existing and proposed storm ponds. Development permits will be subject to the requirements of the latest Fire Underwriters Survey.

5 IMPLEMENTATION STRATEGY

5.1 Area Structure Plan Approval

The first step for the implementation of the proposed development is the approval of the Area Structure Plan by the Town of Millet as a bylaw to ensure the goals, objectives and policies are met and satisfied.

5.2 Development Staging

The development staging is shown on Figure 3. All levies and cash in lieu of MR attributed to this plan area shall be calculated and paid on a per subdivision basis as part of the associated development agreement.

5.3 Land Use Buffering

Proposed Industrial developments within the plan area that are adjacent to the existing residential districts will provide on-site buffering and screening. A minimum width of 5m will be required. The buffer may include fencing, berms and landscaping. The requirement will be determined at the time of subdivision and the buffer will be attached to the land title.

8:40 2020 29, Oct. 2470-001-ASP-FIG1.DWG

AM

SHIPWAY INDUSTRIAL YARD

SHIPWAY FARMS TOWN OF MILLET

FIGURE 4 EXISTING FEATURES

Engineering Ltd.

2470-001-ASP-FIG7.DWG Oct. 29, 2020 9:00 AM

Appendix A

Land Titles

November 2020

LAND TITLE CERTIFICATE

S								
LINC	SHORT LEG	AL			TITLE NUMBER			
0027 612 175	4;24;47;2	8 ; NW			162 272 550			
LEGAL DESCRIPT	TION							
THE NORTH WEST	I QUARTER OF	SECTION TWENT	TY EIGHT (28	3)				
TOWNSHIP FORTY	Y SEVEN (47)							
RANGE TWENTY H	FOUR (24)							
WEST OF THE FO	OURTH MERIDI	AN						
CONTAINING 64	.7 HECTARES	(160 ACRES) MC	ORE OR LESS					
EXCEPTING THEF	REOUT :		HECTARES	(ACRES)	MORE OR LESS			
A) PLAN 3446NY	Y R	OAD	0.421	1.04				
B) PLAN 81211(04 S	UBDIVISION	2.50	6.18				
C) PLAN 942242	21 R	OAD	0.805	1.99				
D) PLAN 982439	90 S	UBDIVISION	1.22	3.01				
EXCEPTING THEF	REOUT ALL MI	NES AND MINERA	ALS					
ESTATE: FEE SI	IMPLE							
MUNICIPALITY:	TOWN OF MIL	LET						
DEFEDENCE NIIM	DED. 000 071	005 ±1						
REFERENCE NOM	DER. 962 271	905 +1						
	R	EGISTERED OWNE						
REGISTRATION	R DATE (DMY)	EGISTERED OWNE	E VALUE		CONSIDERATION			
REGISTRATION	R DATE (DMY)	EGISTERED OWNE DOCUMENT TYP	ER (S) E VALUE		CONSIDERATION			
REGISTRATION	R DATE (DMY)	EGISTERED OWNE DOCUMENT TYP	ER (S) E VALUE		CONSIDERATION			
REGISTRATION 	R DATE (DMY) 29/09/2016	EGISTERED OWNE DOCUMENT TYPI TRANSFER OF I	ER(S) E VALUE	 00	CONSIDERATION			
REGISTRATION 162 272 550 OWNERS	R DATE (DMY) 29/09/2016	EGISTERED OWNE DOCUMENT TYPI TRANSFER OF I	ER(S) E VALUE	00	CONSIDERATION \$1			
REGISTRATION 162 272 550 OWNERS SHIPWAY FARMS	R DATE (DMY) 29/09/2016 LTD.	EGISTERED OWNE DOCUMENT TYP	ER(S) E VALUE		CONSIDERATION 			
REGISTRATION 	R DATE (DMY) 29/09/2016 LTD.	EGISTERED OWNE DOCUMENT TYPI TRANSFER OF I	ER(S) E VALUE		CONSIDERATION \$1			
REGISTRATION 162 272 550 OWNERS SHIPWAY FARMS OF BOX 58 MILLET	R DATE (DMY) 29/09/2016 LTD.	EGISTERED OWNE DOCUMENT TYP TRANSFER OF I	ER(S) E VALUE	00	CONSIDERATION \$1			
REGISTRATION 162 272 550 OWNERS SHIPWAY FARMS OF BOX 58 MILLET ALBERTA TOC 12	R DATE (DMY) 29/09/2016 LTD.	EGISTERED OWNE DOCUMENT TYPI	ER(S) E VALUE	00	CONSIDERATION \$1			
REGISTRATION 162 272 550 OWNERS SHIPWAY FARMS OF BOX 58 MILLET ALBERTA TOC 12	R DATE (DMY) 29/09/2016 LTD.	EGISTERED OWNE DOCUMENT TYP	ER(S) E VALUE	00	CONSIDERATION \$1			
REGISTRATION 162 272 550 OWNERS SHIPWAY FARMS OF BOX 58 MILLET ALBERTA TOC 12	R DATE (DMY) 29/09/2016 LTD.	EGISTERED OWNE DOCUMENT TYP	ER(S) E VALUE	00	CONSIDERATION \$1			
REGISTRATION 162 272 550 OWNERS SHIPWAY FARMS OF BOX 58 MILLET ALBERTA TOC 12	R DATE (DMY) 29/09/2016 LTD. 20	EGISTERED OWNE DOCUMENT TYP	ER(S) E VALUE	00	CONSIDERATION \$1			
REGISTRATION 162 272 550 OWNERS SHIPWAY FARMS OF BOX 58 MILLET ALBERTA TOC 12	R DATE (DMY) 29/09/2016 LTD. 20	EGISTERED OWNE DOCUMENT TYP TRANSFER OF I	ER(S) E VALUE LAND \$230,0	00 ESTS	CONSIDERATION \$1			
REGISTRATION 162 272 550 OWNERS SHIPWAY FARMS OF BOX 58 MILLET ALBERTA TOC 12	R DATE (DMY) 29/09/2016 LTD. ZO	EGISTERED OWNE DOCUMENT TYP TRANSFER OF I	ER(S) E VALUE LAND \$230,0	00 ESTS	CONSIDERATION \$1			
REGISTRATION 162 272 550 OWNERS SHIPWAY FARMS OF BOX 58 MILLET ALBERTA TOC 12 REGISTRATION	R DATE (DMY) 29/09/2016 LTD. ZO EN(EGISTERED OWNE DOCUMENT TYP TRANSFER OF I	ER (S) E VALUE LAND \$230,0 ENS & INTER	00 ESTS	CONSIDERATION \$1			
REGISTRATION 162 272 550 OWNERS SHIPWAY FARMS OF BOX 58 MILLET ALBERTA TOC 12 REGISTRATION NUMBER I	R DATE (DMY) 29/09/2016 LTD. 20 EN(DATE (D/M/Y)	EGISTERED OWNE DOCUMENT TYP TRANSFER OF I CUMBRANCES, LI	ER (S) E VALUE LAND \$230,0 ENS & INTER JLARS	00 ESTS	CONSIDERATION \$1			
REGISTRATION 162 272 550 OWNERS SHIPWAY FARMS OF BOX 58 MILLET ALBERTA TOC 12 REGISTRATION NUMBER I	R DATE (DMY) 29/09/2016 LTD. ZO EN(DATE (D/M/Y)	EGISTERED OWNE DOCUMENT TYP TRANSFER OF I	ER (S) E VALUE LAND \$230,0 ENS & INTER JLARS	00 ESTS	CONSIDERATION \$1			
REGISTRATION 162 272 550 OWNERS SHIPWAY FARMS OF BOX 58 MILLET ALBERTA TOC 12 REGISTRATION NUMBER I 902 324 168	R DATE (DMY) 29/09/2016 LTD. 20 ENC DATE (D/M/Y) 06/11/1990	EGISTERED OWNE DOCUMENT TYP TRANSFER OF I CUMBRANCES, LI PARTICU	ER (S) E VALUE LAND \$230,0 ENS & INTER JLARS OF WAY	00 ESTS	CONSIDERATION \$1			
REGISTRATION 162 272 550 OWNERS SHIPWAY FARMS OF BOX 58 MILLET ALBERTA TOC 12 REGISTRATION NUMBER I 902 324 168	R DATE (DMY) 29/09/2016 LTD. 20 ENC DATE (D/M/Y) 06/11/1990	EGISTERED OWNE DOCUMENT TYP TRANSFER OF I CUMBRANCES, LI PARTICU UTILITY RIGHT GRANTEE - ICG	ER(S) E VALUE LAND \$230,0 ENS & INTER JLARS OF WAY UTILITIES	00 00 ESTS (ALBERTA)	CONSIDERATION \$1			

ENCUMBRANCES, LIENS & INTERESTS

PAGE 2 # 162 272 550

REGISTRATION

NUMBER DATE (D/M/Y) PARTICULARS

TOTAL INSTRUMENTS: 001

THE REGISTRAR OF TITLES CERTIFIES THIS TO BE AN ACCURATE REPRODUCTION OF THE CERTIFICATE OF TITLE REPRESENTED HEREIN THIS 29 DAY OF OCTOBER, 2020 AT 10:58 A.M.

ORDER NUMBER: 40408098

CUSTOMER FILE NUMBER: 2470-001

END OF CERTIFICATE

THIS ELECTRONICALLY TRANSMITTED LAND TITLES PRODUCT IS INTENDED FOR THE SOLE USE OF THE ORIGINAL PURCHASER, AND NONE OTHER, SUBJECT TO WHAT IS SET OUT IN THE PARAGRAPH BELOW.

THE ABOVE PROVISIONS DO NOT PROHIBIT THE ORIGINAL PURCHASER FROM INCLUDING THIS UNMODIFIED PRODUCT IN ANY REPORT, OPINION, APPRAISAL OR OTHER ADVICE PREPARED BY THE ORIGINAL PURCHASER AS PART OF THE ORIGINAL PURCHASER APPLYING PROFESSIONAL, CONSULTING OR TECHNICAL EXPERTISE FOR THE BENEFIT OF CLIENT(S).

Appendix B

Historical Resource Application

Historic Resources Application

Activity Administration

Date Received: October 20, 2015

HRA Number: 4835-15-0136-001

Project Category:	Subdivi	sions (4835)		
Application Purpose:	V	Requesting HRA Approval /	Requirements	
Lands Affected	N	All New Lands		
Project Type:	Ø	Industrial Subdivision	ESRI Shapefiles are attached (ves/no)	no
			Approximate Project Area (ha) Lot, Block, Plan	59 NW SEC. 28-47-24-W4M

Project Name:	Shipway Industrial Yard ASP
Additional Name(s):	

Key Contact:	Ali Shmoury	Affiliation:	AREA Consulting Inc.
Address:	15524 47 Street	City / Province:	Edmonton, AB
Postal Code:	T5Y 3L8	Phone:	(780) 278-4834
E-mail:	Ali@areaconsulting.ca	Fax:	0 -
	, , , , , , , , , , , , , , , , , , ,	Your File Number	

Proponent:	Shipway Farms Ltd.	Contact Name:	Robert Lyle rls Shipway
Address:	Box 58	City / Province:	Millet, AB
Postal Code:	TOC 1ZO	Phone:	(780) 831-1200
E-mail:	bshipway@provincialrentals.com	Fax:	0 -

Proposed Deve		Land Ov	vnership					
MER	RGE	TWP	SEC	LSD List	FRH	SA	CU	СТ
4	24	47	28	11-14	V			

Historical Resources Impact Assessment:									
For archaeological resources:									
Has a HRIA been conducted?	🗆 Ye	s 🗹	No	Permit Number (if applicable):					
For palaeontological resource:									
Has a HRIA been conducted?	Has a HRIA been conducted?								

Historical Resources Act approval is granted subject to Section 31, "a person who discovers an historic resource in the course of making an excavation for a purpose other than for the purpose of seeking historic resources shall forthwith notify the Minister of the discovery." The chance discovery of historical resources is to be reported to the contacts identified within the Listing of Historic Resources.

)singe

October 29, 2015

Date

Appendix C

Geotechnical Report

November 2020

GEOTECHNICAL EVALUATION

PROPOSED STORM WATER RETENTION POND

NW 28-47-24-W4M

MILLET, ALBERTA

Prepared For: BOB SHIPWAY

Prepared By:

SHELBY ENGINEERING LTD. 9632 - 54 Avenue Edmonton, Alberta T6E 5V1

Phone: (780) 438-2540 Fax: (780) 434-3089 email: contact@shelbyengineering.ca

File No. 1-16,538

DECEMBER 2012

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION	1
3.0	FIELD INVESTIGATION	1
3.1 3.1.1 3.1.2 3.1.3 3.1.4	SUBSURFACE CONDITIONS Topsoil Sand Clay Till Bedrock	2 2 3 3
3.2	GROUNDWATER OBSERVATIONS	3
4.0	RECOMMENDATIONS	4
4.1	MATERIALS	4
4.2	SITE PREPARATION	4
4.3 4.3.1 4.3.2	COMPACTION Berms Clay Liner	5 5 5
5.0	CLOSURE	7

APPENDIX I

DRAWING/PLATE NO'S

Test Hole Logs	1 to 5
Site Plan	6
Sieve Analysis Report	7 to 8
Coefficient of Permeability	9
Soils Classification Chart	10

APPENDIX II

Standard Terms and Conditions For The Provision Of Services By Shelby Engineering Ltd.

1.0 INTRODUCTION

Shelby Engineering Ltd. (Shelby) has completed a geotechnical evaluation for a proposed Storm Water Retention Pond (SWRP or pond) to be located in Millet, Alberta.

Mr. Bob Shipway authorized this evaluation on October 14, 2012. This report is subject to the Standard Terms and Conditions for the Provision of Services by Shelby Engineering Ltd. contained in Appendix II.

The project will consist of the construction of a 6,290 cubic metre SWRP, to be located on the east side of Range Road 244, approximately 400 metres south of 45 Avenue (Secondary Road 616) in Millet, AB. It is anticipated the base of the SWRP will be situated approximately 4.5 metres below current grade. A berm will be constructed around the perimeter of the pond.

The field drilling and sampling program was undertaken on October 31, 2012 and was comprised of five test holes to a maximum depth of 6.4 metres below grade, where auger refusal occurred.

2.0 SITE DESCRIPTION

The site is located within the quarter section legally described as NW 28-47-24-W4M, just outside the southeastern limits of the Town of Millet, Alberta. Currently, the site is mainly a hay field with a rolling terrain.

3.0 FIELD INVESTIGATION

The subsurface conditions were examined by drilling a total of five test holes within the footprint of the proposed SWRP. Test hole logs are enclosed as Drawings 1 to 5, Appendix I, and the locations of the test holes are indicated on the Site Plan, enclosed as Drawing 6, Appendix I.

Disturbed soil samples were obtained at 0.3 metres below existing grade and thence at regular depth intervals of 0.76 metres for moisture content determination. A continuous field log was maintained and all samples were returned to our laboratory for visual confirmation of our field logs and for pertinent laboratory testing.

Laboratory testing consisted of visual classifications, moisture contents, Atterberg limits, hydrometer tests, and a permeability test on a composite sample. All field and laboratory test results are contained in the test hole logs.

3.1 SUBSURFACE CONDITIONS

The general stratigraphy encountered at test hole locations was comprised of topsoil underlain by sand or clay till followed by bedrock. The reader is advised that the consistency of and the extent of the various soil strata evidenced at test hole locations will vary between test borings and in areas of the site that have not been explored.

3.1.1 Topsoil

Topsoil was initially encountered in all test holes extending to depths ranging from 175mm to 300mm below existing grade. The topsoil was described as black in colour, silty or clayey and contained traces of rootlets.

3.1.2 Sand

Sand was encountered beneath the topsoil in one test hole, TH-2, extending to a depth of 0.6 metres below grade. The sand was described as fine grained, containing traces of clay till, and dry with the moisture content of one sample being 7%.

3.1.3 Clay Till

Clay till was encountered beneath the topsoil in two test holes, TH-1 and TH-3, extending to depths ranging from 0.9 metres to 1.0 metres below grade. The clay till was described as brown in colour, silty, sandy and contained traces of gravel and oxides. Hydrometer test on one sample of the clay till determined that it contained 0.5% gravel, 40.8% sand, 28.3% silt and 30.4% clay. Atterberg limits on one selected sample determined the clay till to be high plastic with a liquid limit of 60 and a plastic limit of 19. The in situ moisture content of the clay till ranged from 11% to 14%.

3.1.4 Bedrock

Bedrock comprised of interbedded layers of clay shale and sandstone was encountered beneath the topsoil, clay till or sand in all test holes extending to the maximum depth of drilling. A hydrometer test on one sample of the clay shale determined that it contained 0.0% gravel, 3.3% sand, 61.3% silt and 35.4% clay. Atterberg limit testing on one selected sample determined the clay shale to be high plastic with a liquid limit of 54 and a plastic limit of 24. The in situ moisture content of clay shale ranged from 8% to 27%, while that of sandstone ranged from 10% to 28%. Atterberg limits on a composite sample of clay shale and sandstone determined it to be medium plastic with a liquid limit of 35 and a plastic limit of 18. A falling head permeability test conducted on the composite sample determined it to be practically impermeable, with a permeability of 2.0×10^{-9} cm/sec.

3.2 GROUNDWATER OBSERVATIONS

The slough and groundwater conditions encountered in the test holes on completion of field drilling and at 23 days subsequent to standpipe installation are summarized below:

	Depth Below Existing Grade (metres)						
	On comple	etion of drilling	Water Level				
Location	Slough	Water	After 23 Days				
TH-1	No	Dry	Dry to 3.05m				
TH-2	No	Dry	= 10				
TH-3	No	Dry	2.25				
TH-4	No	Dry					
TH-5	No	Dry	2.55				

Slough and Groundwater Observations

Slough and groundwater conditions encountered on completion of field drilling are also recorded on the test hole logs enclosed in Appendix I.

4.0 **RECOMMENDATIONS**

It is our understanding the project will consist of the construction of a 6,290 cubic metre SWRP. The base of the pond will be situated approximately 4.5 metres below grade.

4.1 MATERIALS

Medium to high plastic clay, clay till, clay shale or sandstone may be used to form the shape of the pond and to construct the berms. The native soils comprised of the medium to high plastic clay till, clay shale and sandstone are considered suitable construction materials for this project. Any organic soil or topsoil may be used for final landscaping only and not as part of the structure of the pond berms or liner.

4.2 SITE PREPARATION

The pond area, including regions that will be beneath the berms, should be stripped of all topsoil, roots, or organic matter associated with any vegetation. These materials should be removed from the site and not used for the construction of berms or liner. The topsoil may be utilized on the exterior of the berms for landscaping purposes only.

The groundwater elevation ranged from 2.25 to over 3.05 metres below grade. The groundwater elevation will fluctuate both seasonally and annually with the highest elevation being recorded in the spring and early summer.

A 400 mm sand layer was encountered in TH-2. The sand should be over-excavated and removed from the site. Sand is not considered suitable material for construction of the berms or the liner.

4.3 COMPACTION

4.3.1 Berms

The clay till, clay shale and/or sandstone used to construct the berms should be placed and compacted in 200 mm thick lifts (prior to compaction) and compacted to 95 percent of Standard Proctor Maximum Dry density. The slopes of the interior and exterior sides of the pond should not exceed 1 vertical to 3 horizontal. Vegetation should be encouraged on the exterior sides, top and on the interior above the projected high water level of the pond to prevent erosion. A minimum top width of 3 metres and freeboard of 1 metre is recommended.

4.3.2 Clay Liner

The pond liner, which is constructed on the interior slope of the pond, should be comprised of medium to high plastic clayey material and should be placed in 150mm thick lifts and compacted to 95 percent of Standard Proctor maximum dry density at 2% to 4% over optimum moisture content. A minimum liner total thickness of 600 mm is recommended. The clayey soils for clay liners must be compacted to achieve a saturated hydraulic conductivity less than 1×10^{-7} cm/sec.

Testing should be undertaken during construction to ensure that the compaction specified is achieved.

The native clayey material (clay till, clay shale and a composite sample of clay shale and sandstone) was evaluated against the following minimum recommended requirements:

- a) Soil must be a Unified Soil Classification of CI or CH
- b) Soil must contain a minimum of 50% by weight which passes the No. 200 (0.075 mm) sieve
- c) Soil must have a clay content of 20% (less than or equal to 0.002 mm) by weight or greater
- d) Soil must have a plasticity index of 10 or greater
- e) Soil must be a well graded material

Atterberg limits conducted on three samples (clay till, clay shale and composite clay shale/sandstone) determined that the native soils range from medium to high plastic, with plasticity indices ranging from 17 to 42, and therefore meet requirements a) and d) above.

Two hydrometer tests conducted on samples of clay till and clay shale determined that the clay/silt (grain sizes less than 0.075mm) content ranged from 58.7% to 96.7%, with clay contents ranging from 30.4% to 35.4%. The results also determined that the materials were well graded and will therefore meet requirements b), c) and e) above.

To assess the hydraulic conductivity of the soil at the site, a falling head permeability test was conducted on a composite sample of clay shale and sandstone obtained from the test holes at depths exceeding 2.95 metres below grade. The results indicated that the hydraulic conductivity of the soil was 2.0×10^{-9} cm/sec (i.e. practically impermeable) and will therefore be suitable for use as a clay liner.

5.0 CLOSURE

All services provided by Shelby Engineering Ltd. are subject to our Standard Terms and Conditions, which are attached in Appendix II.

Respectfully Submitted,

Shelby Engineering Ltd.,

Haron K. Cherogony, P. Eng.,

Corey E. Dale, P. Eng.

PERMIT TO PRACTICE
SHELBY ENGINEERING 1.70.
Signature
Date DEC 1 2 2012
PERMIT NUMBER: P 3580
The Association of Professional Engineers,
Geologists and Geophysicists of Alberta

HC/CD: ab/Encl. File #1-16,538 December, 2012 **APPENDIX I**

STORM WATER RETENTION POND					BOB SHIPWAY			TE	EST HOLE NO: TH-1			
NW 28-47-24 W4						START DATE: 31/10/12			PR	PROJECT NO: 1916538		
PROJECT ENGINEER: HC					SOLID STEM AUGERS			EL	EVATION: 99.12 m			
SAMP	LE TYP	PE GRA	B	Z]Shelb	Y TUBE	SPT	NO RECOVERY	Шнс	LLOW S	STEM	
Depth(m)	A STA 20 PLASTI	NDARD PENETRA) 40 60 C N.C. 40 60	110N (N)▲ 80 LIQUID 80	SAMPLE TYPE RUN NO	SPT(N)		SOI DESCRII	L PTION	USC	SOIL SYMBOL	ADDITIONAL TESTING	ELEVATION(m)
0.0						TOPS	OIL: Black, silty, trac	e gravel, dry	01			- 99.0
- - - - - - - - - - - - - - - -				2		to 3 CLAY plas whit	300mm depth. 7 TILL: Brown, silty, se stic, very stiff, trace te deposits. 7 SHALE: Light bluish	andy, high gravel, oxides grey, hard, dry.	CH			- - - - - - - - - - - - - - - - - - -
- 2.0				3					cs		Grain Size Analysis Report	- - - - - - - - - - - - - - -
- 3.0				5		-wł AUGE DRY STAN	nitish grey, very hard ER REFUSAL @ 3.05 N ON COMPLETION, NO IDPIPE INSTALLED.	IETERS. SLOUGH.			Dry after 23 days	96.0
- - - - -												- - - - - - - -
- - - - - -												94.0
6.0												- - - - - - - - -
- 												92.0
SHELBY ENGINEERING				LTD.	REVIEWED BY: GWD			COMPLETION DEPTH: 3.05 II	1			
Edmonton, Alberta				rta		Fig. No: 1			Page 1	1 of 1		
STORM	WATER	RETENTION	POND				BOB SHIPWAY			TES	ST HOLE NO: TH-2	
------------------	--------------------------	-----------------	-------------------------	-------------	--------	--------------	---	------------------------------------	-----	-------------	-------------------------	----------------
N₩ 28	8-47-2	4 W4					START DATE: 31/10/1	2		PR	DJECT NO: 1916538	
PROJE	CT ENG	NEER: HC		1		1.1001.00.10	SOLID STEM AUGERS			LOW O	VALION: 99.47 m	
SAMP	LE IYPI	GRAE		<u>г- т</u>		HELBY IVI		NO RECOVERT			SOLID STEM	
Depth(m)	▲ STANI 20 PLASTIC	ARD PENETRATION	0N (N)▲ 80 LIQUID	SAMPLE TYPE	RUN NO	SPT(N)	SOI DESCRIF	L PTION	NSC	SOIL SYMBOL	ADDITIONAL TESTING	ELEVATION(m)
0.0	20	40 00		H		TOF	SOIL: Black, silty, trac	e rootlets, dry	OL			-
-	•				1	L to SAM	200mm depth. D: Brown, fine grained nps, dry.	I, trace clay till	SP			- 99.0
- - - 1.0					2	CLA ve	Y SHALE: Light greenis y stiff, trace gravel, w	h brown, silty, /hite deposits.				
-					3							- 98.0
- - 2.0						-f	aht bluish arev, hard.		CS			
- - - -	•				4		a					- - 97.0
- - 3.0					5	SAN	DSTONE: Light bluish q	grey, silty, dense				-
-												96.0
4.0	•				6				SS			
	•				7	AU	ER REFUSAL @ 4.60 M	ETERS.				- 95.0
- 						DRY	ON COMPLETION. NO STHOLE BACKFILLED.	SLOUGH.				-
												- 94,0 -
- - 6.0												
- - - -												93.0
- - 7.0 -												
E												92.0
		SHELBY	(EN	GIN	NET	ERIN(G LTD.	LOGGED BY: GWD		_	COMPLETION DEPTH: 4.6 m	
		Ē	dmon	ton	1. A	lberta		Fig. No: 2			Page	1 of 1

STORM	WATER	RETEN	TION	PON	D				BOB SHIP	'WAY				TE	ST HO	E NO:	TH-	3	
NW 28	8-47-24	4 W 4							START DA	NTE: 31/10/1:	2			PR	OJECT	NO: 1	916538		
PROJE	CT ENG	INEER:	HC						SOLID ST	EM AUGERS			77	EL	EVATIO	N: 99.	56 m		
SAMP	LE TYPE		GRAE	3				SHELB	(TUBE XIS	iPT	NO RECOVER	<u>Ү []</u>	HOL	LOWS	STEM	S	olid sti	EM	
Depth(m)	A STANE	40 40 40 40	60 C.	0N (N) <u>80</u> LIQ 80) 🔺 IUID I	SAMPLE TYPE	RUN NO	SPT(N)	D	SOII ESCRIF	TION		USC	SOIL SYMBOL		ADDI TES	TION# STING	L	ELEVATION(m)
0.0									TOPSOIL: Black	k, silty, trace	rootlets, dry		OL		0	et i			F
- - - - - - - - - -							2		to 175mm de CLAY TILL: Bro plastic, stiff, -silty, sandy stiff, trace o SANDSTONE: G moist to wet.	epth. >wn, silty, san trace gravel , gravelly, me xides. creenish brow	ndy, high , oxides. edium plastic, m, silty, loose,		СН		Grain	SIZE Ar	ialysis k	керогі	- 99.0 - - - - -
F							3		-compact, m	noist.									F an a
- 2.0													SS						- 98.0
[₹							4		-light bluish	grey, dense.					Water	after 2	3 days	(2.25m)	╞╶
-												ľ							- 97.0
- - - 3.0 -							5		CLAY SHALE: I AUGER REFUS/ DRY ON COMPL	Light grey, ve AL @ 3.05 ME LETION. NO S	ry hard. TERS. LOUGH.		CS						
- 4.0									JIANDEIEL ING	HALLED.									96.0
- 5.0																			-
- - - 6.0										a									- 94.0
- 7.0																			93.0
	<u> </u>	्रमह	IRV	प्रा	N	<u>'</u> TN	।ना	EDI	NGITD		OGGED BY: GWD	· 1			COMPL	ETION	DEPTH:	3.05 m	E
	k	יל, דר.	чDТ П	. Ці Ант	•~1 14∫	711 ~~~	чЦ). А	الالات الحد	INT LID.		REVIEWED BY: JPI	D			COMPL	ETE: 3	1/10/1	2	_1 4
12/12/07 1	1-00AH (7 5H	0	Ľ	um	UIII	UUI)	. A	iber	ıd	1	'ig. NO: 3							rage 1	01 1

STORM	WATER	RETENTION	POND				BOB SHIPWAY		TES	T HOLE NO: TH-4	
NW 28	3-47-24	W4					START DATE: 31/10/12		PRO	JECT NO: 1916538	
PROJE	CT ENGI	NEER: HC					SOLID STEM AUGERS		ELE	VATION: 99.96 m	
SAMP	le type	GRAB				SHELBY TU	BE SPT NO		.0₩ ST	EM SOLID STEM	
Depth(m)	A STANDA 20 PLASTIC	ARD PENETRATIO 40 60 M.C. 40 60	N (N)▲ 80 LIQUID	SAMPLE TYPE	RUN NO	SPT(N)	SOIL DESCRIPTION	usc .	SOIL SYMBOL	ADDITIONAL TESTING	ELEVATION(m)
0.0						TO	SOIL: Black, clayey, trace rooth	ets, OL			
- - - - - - - - - - - - - - - - - - -					2	SA SA	<u>y to 250mm depth,</u> IDSTONE: Brown, silty, compact, ides, moist.	, trace SS			
- 2.0					3	-	some clay shale lenses, trace o	xides. SS/CS			
					5		ight brown, hard.	rd. (CS			- - - - - - - - - 97.0
- - - - - - - - - - - -	••••				6	SA	NDTONE: Light grey, very dense.	22			
- 5.0					7	AU DR TES	GER REFUSAL @ 4.40 METERS. (ON COMPLETION. NO SLOUGH. STHOLE BACKFILLED.				- - - - - - 95.0
- 6.0										:	- - - - - - - -
- - - - - - - - - - - - - - - - - - -											93.0
	S	SHELBY	EN	GIN	NE	ERIN	LTD.	BY: GWD	(COMPLETION DEPTH: 4.4 m	
		E	dmon	ton	l. A	lberta	Fig. No:	4		Page 1	of 1
12/12/67 -	10-2144 (7.54)	······		بالهجين	-1. 4.3	- WA WM					_

STORM	WATER	RETENTION	POND					BOB SHIPWAY			TES	T HOLE NO: TH-5	
NW 28	-47-24	W4						START DATE: 31/10/1	2		PRO	DJECT NO: 1916538	
PROJE	CT ENGIN	NEER: HC						SOLID STEM AUGERS			ELE	VATION: 100.15 m	
SAMPL	E TYPE	GRAB		<u> </u>	\square	SHELBY	TUBE	SPT	NO RECOVERY	Шног	LOW S	TEM SOLID STEM	
Depth(m)	A STAND/ 20 PLASTIC	ARD PENETRATIO 40 60 M.C.	ON (N) ▲ 80 LIQUID	SAMPLE TYPE	RUN NO	SPT(N)		SOI DESCRIF	L PTION	nsc	SOIL SYMBOL	ADDITIONAL TESTING	ELEVATION(m)
0.0	20	40 00			1		TOPS dry	SOIL: Black, clayey, tro to 300mm depth.	ice rootlets,	OL			
- - -							SANI trac	DSTONE: Brown & grey ce oxides.	r, silty, compact,	SS			- - -
-	•				2		CLAY	SHALE: Greenish bro	wn, stiff.	cs			-
- 1.0 - - -					3		SANI	OSTONE: Light grey, si	lty, dense.	SS			99.0
- 2.0					4		CLAY	ſ SHALE: Light grey, h	ard.	cs			
- ¥							SAN	DSTONE: Light grey, si	lty, dense.			Water after 23 days (2.55m)	- ¥
- 3.0					5					\$5			- - - 97.0
					6								
- 4.0 - - -							CLA	Y SHALE: Light grey, t	hard.				- 96.0 - -
					7		1						-
- 5.0 - - -					8					CS			95.0
- - - - 6,0					9								
7.0							AUC WAT NO STA	ER REFUSAL @ 6.40 M IER @ 5.2 METERS ON SLOUGH. NDPIPE INSTALLED.	IETERS. COMPLETION.				- - - - - - - - - - - - - - - - - - -
-													[
		SHELR	Y EN	IC.	INF	R	INC	T LTD	LOGGED BY: GWD			COMPLETION DEPTH: 6.4 m	
		חחהווט	r El Falancia	۹Ū.	7. 1 T A T		nt 0 TT 1 7	ч тттт,+	KEVIEWED BY: JPD			COMPLETE: 51/10/12	1 of 1
12/12/07	10:21AN (7.5	JM)	<u>Eamo</u>	ши	<u>лі.</u>	AIDE	<u>rta</u>	· · · · · · · · · · · · · · · · · · ·	<u>prig. no. o</u>			i uyu	

GRAIN-SIZE ANALYSIS REPORT

By ASTM D422 Procedure

Client:	BOD Shipway			Plate No.:			
				Job Number:	1-16538		
				Project:	Storm Water	Retention Pond	
Attn:				Report Dist.:			
			L				
						Sieve Size	Percent
						(mm)	Passing
Date Sampled:	Oct. 30, 2012	Sample Time:	N/A		<u>.</u>		
O					Ż		
Sampled Location:	TH 1 @ 5.0'	Sampled By:	GD		nal		
Data Tostad:	Nev 14 0010	Tested Bu	N/N/		X		
Date rested.	NOV. 14, 2012	rested by:	IVIIVI		l S		
Moisture Content:	10.6%	Crush Count:	N/A		Si		
	10.070						
Sample Description:		Clay sh	ale, Green, siltv.			0.315	100.0
						0.16	99.8
Comments:						0.08	96.9
						0.0367	95.3
					5	0.0265	91.2
					lete	0.0172	85.1
Distribution of Material:					E	0.0105	72.8
					/dr	0.0077	64.6
	% Gravel: 0.0%	% Silt: _	61.3%		Ê	0.0056	56.4
	% Sand: 3.3%	% Clay: _	35.4%			0.0029	42.0
						0.0012	30.1
(S				1			
	GRAVEL	SA	ND		_		
	COARSE FINE	COARSE MEDIUM	FINE	- SIL	.1	CLAY	
3 							
100.0							
S 00.0							
H 70.0							
60.0							
5 40.0							
30.0							
Ä 20.0							
• 10.0					+		
100	10	1	0.1	0.01	(0.001	0.0001
		GRA	IN SIZE - MILLI	METERS			
				Deview	od By:	1	Eng
				IKEVIEW	CUIIV. INTER	/ -	
				Review	ed by. The	-/	.Eng.

#8

By ASTM D422 Procedure

Job	b Number:	1-16538		
		1-10000		
Proje	oject:	Storm Water R	etention Pond	
Attn:	port Dist.:			
	[_	Sieve Size (mm)	Percent Passing
Date Sampled: Oct. 30, 2012 Sample Time: N/A		<u>.0</u>		
Sampled Location:TH 3 @ 1.0' Sampled By:GD		nalys		
Date Tested: Nov. 14, 2012 Tested By: MM		ve A	10 5	100.0 99.5
Moisture Content: 9.1% Crush Count: N/A		Sie	2.5 1.25	97.8 95.6
Sample Description: Clay till, Brown, CH, silty, sandy, trace gravel, oxides.			0.63	91.5 85.6
Comments:			0.16	70.3 60.6
		er	0.0365	46.3
Distribution of Matorial:		net	0.0172	41.3
		le le	0.0101	39.4
% Gravel: 0.5% % % %		, py	0.0073	37.4
% Sand: 40.8% % Clav: 30.4%		Ť,	0.0053	34.4
70 Gund. 40.077 78 Glay. 30.478		ł	0.0027	
	L		0.0011	20.9
GRAVEL SAND				_
COARSE FINE COARSE MEDIUM FINE	SILT		CLAY	
			┽┼┼┼╎╎╴┼╌╌┼╴	
	+	++	┿╿╢╎╎┙╸┝╸╸┝	
			╅╪╁┟┟┟┟┍┝╼╶┾╼	-i
				_
100 10 1 0.1	0.01	0.	001	0.0001
GRAIN SIZE - MILLIMETE	TERS			
	Reviewe	d By:	7 P	.Eng.

Co	oefficient	of Per	meabi	lity- Fal	ling Hea	d Metho	bd	
Client	Bob Shioway	7		Project		Storm Wa	ter Retentio	n Pond
Sampled By	GD		Date		10/30/2012	File No	1.16538	
Description of Sar	nnle	condetana	eomo o	lavehala	trace cand	The Noi	1-10000	
Location	Combined T	Ja from 10	, some c	a portore t	HACE SANG			
Location			Denow L	e bestorit t	<u>181.</u>		·····	
Sample Data								
Sample Thickness		3.94	cm	Sample 8	Mold		5176 2	a
Diameter		10.1	cm	Tare of M	lold		4553.8	g
Area		79.21	cm ²	Sample V	Veight		622.40	a l
Volume		312.40	cm ³		U			с С
Unit Weight		1691	ka/m ³	Actual %	Compaction		98%	
on the sign	····	1001			Compaction		0070	
Standpipe Data								
Inside Diameter		0.6283	cm					
Area		0.31	cm		19/1	1/2012 8 2	7:00	
Initial Head		198.80	cm ²	(after satu	uration)			:
Test Data								
Date & Time	time(sec)	h ₁ cm	h ₂ cm	Δh	Q	C	Kt	K ₂₀
19/11/2012 15:49:00	26520	198.8	197.	6 1.2	8.7E-08	22	3.5E-09	3.6E-09
20/11/2012 11:04:00	69300	197.6	195.	3 2.3	1.2E-07	22	2.6E-09	2.7E-09
21/11/2012 7 52:00	74880	195.3	194.	5 0.8	1.4E-08	22	8.4E-10	8.7E-10
22/11/2012 7/32:00	85200	194 5	189	8 4.7	4.3E-07	22	4.4E-09	4.5E-09
23/11/2012 7 43:00	87060	189.8	18	7 2.8	1.5E-07	22	2.6E-09	2.7E-09
26/11/2012 7:55.00	259920	187	10	8 <u>7.</u> 0	3.3E-07	· <u>22</u>	2.3E-09	2.3E-09
2011120121.48.00	97060	170	176		2.1E-00	2.4	1.0E-09	1.0E-09
20/11/2012 0:00 00	88200	176 1	170	2.9	5.0E-08		1.75.00	3.0E-09
20/11/2012 8-51-00	87660	174 4	1721		1.7E_08	<u>44</u> 99	0.1E 10	0.25 10
02/12/2012 0:01 00	258000	173.5	170	2 0.8	7.35-08		9.1E-10	9.3E-10
64/12/2012 8:10:00	85680	170.3	160	0 0.2 1 0.0	1.8E-08	20	0.5E_10	0.8E_10
05/12/2012 9 16 00	89820	169.4	168	5 0.9	1.0E-00	22	9.0E-10	9.0L-10
					Average Average	K _t [2.0E-09 2.0E-09	cm/sec cm/sec
		-						

#9

			SOIL CLASSIFC	ATIO	N S	SY	STEM (MODIFIED U.S.C.)
		MA	JOR DIVISION	GROUP SYMBOL	GRAP	PHIC BOL	GROUP NAME LABORATORY CLASSIFICATION CRITERIA
	_	HIG	HLY ORGANIC SOILS	PT		*	PEAT AND OTHER HIGHLY ORGANIC SOILS STRONG COLOR OR ODOR, AND OFTEN FIBROUS TEXTURE
		ARSE	CLEAN GRAVELS	GW	A A A	444	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES, < 5% FINES $C_U = \frac{D_{60}}{D_{10}} > 4$ $1 \le Cc = \frac{(D_{30})^2}{D_{10} \times D_{50}} \le 3$
IEVE	ELS	% of CO	LESS THAN 5% FINES	GP		~~	POORLY-GRADED GRAVELS, GRAVEL-SAND NOT MEETING ALL MIXTURES, < 5% FINES ABOVE REQUIREMENTS
011.5 40.200 SI	GRAV	THAN 50 CTTON RE NO.4 S	. DIRTY GRAVELS	GM		-	SILTY GRAVELS, GRAVEL-SAND-SILT ATTERBERG LIMITS MIXTURES, > 12% FINES Ip < 4
NED SC		MORE .	MORE THAN 12% FINES	GC			CLAYEY GRAVELS, GRAVEL-SAND-CLAY ATTERBERG LIMITS MIXTURES, > 12% FINES Ip > 7
SE-GRA		RSE SIEVE	CLEAN SANDS	SW	2002	20	WELL-GRADED SANDS, GRAVELLY SANDS, Cu>6 and 1≤Cc≤3 < 5% FINES
COARS THAN 50	DS	% OF 00/ IS NO. 4	LESS THAN 5% FINES	SP	0000	000	POORLY-GRADED SANDS, OR GRAVELLY SANDS, < 5% FINES ABOVE REQUIREMENTS
MORE	SAN	THAN 50 DN PASSE	DIRTY SANDS	SM	000		SILTY SANDS, SAND-SILT MIXTURES, > 12% FINES IP < 4
		MORE .	MORE THAN 12% FINES	SC	5143		CLAYEY SANDS, SAND-CLAY MIXTURES, > 12% FINES ABOVE "A" LINE OR Ip > 7
			SILTS	ML			INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY SANDS OF SLIGHT WL < 50 PLASTICITY
SIEVE		BELON N	N "A" LINE ON PLASTICITY CHART; EGLIGIBLE ORGANIC CONTENT	мн			INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS, FINE SANDY OR SILTY SOILS
SOILS to. 200 S			CLAVE	CL		3	INORGANIC CLAYS OF LOW PLASTICITY, GRAVELLY, SANDY, OR SILTY CLAYS, LEAN CLAYS
VAINED		ABO\	/E "A" LINE ON PLASTICITY CHART;	CI		3	INORGANIC CLAYS OF MEDIUM PLASTICITY, 30 < WL < 50
FINE-GF		ľ	REGLIGIBLE ORGANIC CONTENT	СН			INORGANIC CLAYS OF HIGH PLASTICITY, WL > 50
MORE TH		ORGAN	NIC SILTS AND ORGANIC CLAYS	OL			ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
		BELO	W "A" LINE ON PLASTICITY CHART	он			ORGANIC CLAYS OF HIGH PLASTICITY WL > 50
	1	~			70 ლ		PLASTICITY CHART
1. Ali si Astiv	eve siz ! E11	es mentio	ned on this chart are U.S. Standard,		60		Toughness and dry strength indrases with increasing plasticity index when comparing solls at equal liquid limits
2, Boun group is a v	dary c os are vell-gr	lassification given com aded grav	ons possessing characteristics of two bined group symbols. eg. GW-GC el-sand mixture with clay binder of		50		
3. Soil 1 accol	een 59 Traction Indance	% and 129 ns and lim with the 1	6. Iting textural boundaries are in Unified Soil Classification System	(I _p)	40		CH -P: IIIe
(AST plast	M D24 icity ((87), exce I) is reco	pt that an inorganic clay of medium gnized.	Inde	-0		
4. The f perte ASTM	 The following adjectives may be employed to define pertentage ranges by weight of minor components (per ASTM D2488); 			lasticity	30 -		CI MH or OH
		And - 3 Some - 2	36% to 50% 21% to 35%	۵.	20 -		CL
		Trace -	1% to 10%		10 - 7 4	7	CL-ML OL
			SHELBY		° 0		10 20 30 40 50 60 70 80 90 100 Liquid Limit (W _L)
	-	E	ENGINEERING			(CLASSIFICATION CHART PLATE NO. 10
		1	LID	5		- `	

APPENDIX II

STANDARD TERMS AND CONDITIONS FOR THE PROVISION OF SERVICES BY SHELBY ENGINEERING LTD.

- 1. "The services ("the Services") performed for the client (the "Client") by Shelby Engineering Ltd. ("Shelby") described in the report to which these Standard Terms and Conditions are attached (the "Report") have been conducted in a manner consistent with the level of skill ordinarily exercised by members of the engineering profession currently practicing in the jurisdiction in which the Services have been provided."
- 2. In consideration of the provision of the Services, the Client agrees to the limitation of liability provisions herein contained, both on its own behalf, and as agent on behalf of its employees and principals.
- 3. The total amount of all claims the Client may have against Shelby with respect to the Services, including, without limitation, claims in tort or contract, shall be strictly limited to the amount of the fee charged to the Client by Shelby for the Services. Shelby shall not be liable for loss, injury or damage caused by delays beyond Shelby's control, or for any indirect, economic or consequential loss, injury or damage incurred by the Client, including, without limitation, claims for loss of profits, loss of contracts, loss of use, loss of production or business opportunity, loss of contracts or continued overhead expense. No claim shall be brought by the Client against Shelby more than two (2) years after completion of the Services or termination of the agreement to provide the Services.
- 4. The Client shall have no right to set off against any amounts owed to Shelby with respect to the Services.
- 5. The Client agrees that Shelby's employees and principals shall have no personal liability with respect to the Services and the Client shall make no claim or bring any proceedings of any kind whatsoever whether in contract, tort or any other cause of action in law or equity, against Shelby's employees and principals in their personal capacity.
- 6. The Client acknowledges that the Services entail an investigation which by its nature involves the risk that certain conditions between points investigated will not be detected, and that certain other conditions may change with time after provision of the written report of the Services. The Client acknowledges and accepts such risk and is aware that the Report can only provide for the conditions at the investigated points at the time of investigation. Extrapolation between the investigated points is at the Client's risk. If the Client requires additional or special investigations outside the scope of the Report, the Client must request such additional investigations from Shelby.
- 7. The Report has been prepared for a specific site and in light of the specific purposes communicated to Shelby by the Client. Shelby accepts no responsibility for the findings contained in the Report if applied to a different site, or if there is a material change in the purposes communicated to Shelby by the Client. The information and opinions described in the Report are provided solely for the benefit of the Client. NO OTHER PARTY MAY USE OR RELY UPON THE REPORT OR ANY PORTION THEREOF WITHOUT THE WRITTEN CONSENT OF SHELBY. The Client shall maintain confidentiality of the Report and ensure that the Report is not distributed to third parties. The Client hereby agrees to indemnify Shelby for any claims brought against Shelby by third parties and arising out of the Client's failure to maintain the confidentiality required under this paragraph 7.
- 8. Except as stipulated in the Report, Shelby has not been retained to address, investigate or consider, and has not addressed, investigated or considered environmental or regulatory issues with respect to the site on which the Services have been performed. Notwithstanding the foregoing, Shelby may be required to disclose to regulatory bodies certain hazardous conditions discovered through provision of the Services, and the Client shall not make any claim against Shelby for such disclosure.

Appendix D

Stormwater Management Approval

Aberta Environment and Sustainable Resource Development

Provincial Programs Regulatory Approvals Centre Main Floor, Oxbridge Place 9820 - 106 Street Edmonton, Alberta T5K 2J6 Canada Telephone: (780) 427-6311 Fax: (780) 422-0154 www.environment.alberta.ca

August 1, 2013

County of Wetaskiwin No. 10 **BOX 6960** WETASKIWIN AB T9A 2G5

Dear Sirs:

Re: Millet Storm Drainage System Application No. 001-330704

Due to the implementation of the Storm Drainage Regulations, storm drainage systems have changed from requiring an approval to requiring a registration. As a result, the storm drainage system connected with your wastewater system has now been registered as 330704-00-00 and is enclosed.

It is your responsibility to obtain any approvals, permits or licences that are required from other agencies.

All licences, authorizations, registrations and approvals issued by Alberta Environment under the Alberta Environmental Protection and Enhancement Act or the Water Act should not be taken to mean the proponent (applicant) has complied with federal legislation. Proponents should contact Fisheries and Oceans, Habitat Management, 4253 - 97 Street, Edmonton, Alberta, T6E 5Y7, telephone (780) 495-4220, fax number (780) 495-8606 in relation to the application of federal laws relating to the Fisheries Act (Canada) and the Navigable Water Protection Program, Transport Canada, Canada Place, 1100, 9700 Jasper Avenue, Edmonton, Alberta, T5J 4E6, telephone (780) 495-8215, relating to the Navigable Waters Protection Act.

If you have any questions, please contact me at (780) 427-9539.

Yours truly,

Danie Rawany

Elaine Lawrence Remediation Certificate Coordinator

Enclosure

CC: Win Tun, Central Region - Camrose **Robert Shipway**

Government of Alberta

Environment

REGISTRATION PROVINCE OF ALBERTA

ENVIRONMENTAL PROTECTION AND ENHANCEMENT ACT R.S.A. 2000, c.E-12, as amended

REGISTRATION NO.	330704-00-00
APPLICATION NO.	001-330704
EFFECTIVE DATE:	June 17, 2013
REGISTRATION HOLDER	Hamlet of Millet
	County of Wetaskiwin

Registration is issued for the following activity:

ACTIVITY: Construction, operation or reclamation of a storm drainage system for storm

drainage in the Hamlet of Millet, as described in the attached Appendix.

Designated Director under the Act

June 17, 2013 Date Signed

REGISTRATION NO. 330704-00-00 Page 1 of 1

APPENDIX ATTACHED TO REGISTRATION

The storm drainage system in the Hamlet of Millet consists of:

Storm Drainage

(a) storm drainage management facility that includes:

#	Location	Receiving Stream
1	Shipway Development Strom Water Management Facility located in NW ¼ Sec 28-47-24 W4M	County ditch

Appendix E

Stormwater Management Report

Shipway Development N.W.1/4 Sec., 28-47-24-W4M Stormwater Management Report

AREA Consulting Inc.

STORMWATER MANAGEMENT REPORT

Shipway Development N.W.1/4 Sec., 28-47-24-W4M

Submitted to: Bob Shipway Box 58 Millet, Alberta T0C 1Z0

Submitted by:

AREA Consulting Inc. 15524 - 47 Street Edmonton, AB T5Y-3L8 Tel (780) 278-4834 Fax (780) 478-4834

October 31, 2011

Page 1

Table of Contents (Figure 1 Location Plan, Figure 2 Pre-development Storm Basin Plan, 3 APPENDIX A APPENDIX B APPENDIX C 1.0 1.1 2.0 2.1 3.0 3.1 3.2 3.3 3.3.1 3.3.2 4.0

List of Figures

Figure 3-1 Simulated 1 in 100 Year Flood Elevation Soutwest Pond	0 I
List of Tables	
Table 3.1Pervious and Impervious Sub-Area Loss and Runoff ParametersTable 3.2Green-Ampt Infiltration ParametersTable 3.3Characteristics of Different Land Uses Represented In the IndusSubdivision Site Plan	3
Table 3.4 Pond Characteristics and Computed Peak Discharges from the Ponds9 Table 3.5 Maximum Percentage Utilization of Ponds during the 1 in 100 year Design Storm Event)

LIST OF APPENDICES

APPENDIX A (Figure 1 Location Plan, Figure 2 Pre-development Storm Basin Plan,

Figure 3 Post/Future Storm Basin Development Plan)

APPENDIX B (Hydrologic Parameters, Email From Alberta Environment For Predevelopment Requirements)

APPENDIX C (SWMM5 Dynamic Wave Routing Results)

Shipway Development N.W.1/4 Sec., 28-47-24-W4M Stormwater Management Report

AREA Consulting Inc.

October 18, 2012

Bob Shipway Box 58 Millet, Alberta T0C 1Z0

Attention:

Subject: Shipway Development N.W. ¹/₄ Sec., 28-47-24-W4M Stormwater Management Design Report

1.0 INTRODUCTION

Area Consulting has been commissioned Mr. Bob Shipway, to develop a Stormwater Management Report (SWMR) for a portion of land within NW ¼ Sec 28 Twp 47 Range 24 W4th directly east of the Town of Millet, Alberta. The proposed development will be located east of Range Road 244 and South of Township Road 475, west of Block B Plan 982-4390, south boundary directly east of the south boundary of Block A Plan 812-1104 as shown on Figure 1, Location Plan in Appendix A.

This report presents the design of the proposed SWMR for approval by the County of Wetaskiwin No. 10, and Alberta Environment under the Water Act and Environmental Protection and Enhancement Act. The report includes system design methodology as well as the overall design drawings for review for the proposed development only and adjacent areas.

1.1 System Overview

The proposed 9.88 ha development is located within NW ¼ Sec 28 Twp 47 Range 24 W4th directly east of the Town of Millet, Alberta. The proposed development will be located east of Range Road 244 from the south east corner boundary of Block A Plan 812-1104 and South of Township Road 475, the east boundary of the proposed development is approximately 41 m west of Block B Plan 982-4390. The total site area of the proposed gravel yard is approximately 9.88 ha. The site is currently undeveloped. The plan is to use a stormwater

management facility to control the post-development runoff rates to predevelopment rates.

This report identifies and describes drainage issues and provides a conceptual drainage plan including recommended locations and approximate sizing of stormwater management facilities to control the post-development runoff rates. Design of the stormwater management facility is based on runoff rates resulting from a 1 in 100 year design rainfall event. All system design is based on 1 in 100 year design storm event. Alberta Environment regulations require that the post-development flow rates do not exceed the pre-development flow rates for the 100 year rainfall event.

2.0 PRE-DEVELOPMENT SURFACE DRAINAGE

The natural topography of the proposed subdivision in its pre-development condition has been split into 5 different storm basins. This report will only address Basins 1, 4, and 5. Basins 2 and 3 are beyond the scope of this report.

The natural topography of Storm Basin 5 slopes in a northwest direction at about 0.3-0.4%. The drainage ditch adjacent to Township 475 conveys the runoff into an existing culvert crossing Range Road 244. The natural topography of Storm Basin 1 slopes in a southwest direction at about 1.1-1.6%. The drainage ditch adjacent to Range Road 244 collects sheet flow from storm basin 1. The natural slope of basin 4 from elevation 755.25 m at the north east corner to elevation 753.25 m at the northeast corner. The site is drained by a manmade swale that runs adjacent to Block A to Range Road 244 ditch see enclosed Figure 2 in Appendix A. The drainage ditch adjacent to Range Road 244. It then backs onto Range Road ditch where it crosses Range Road 244. Flow from the existing 600 mm culvert crossing Range Road 244 ends up in a bush on the east side of Pipestone Creek then into the Creek, see enclosed Figure 2 pre-development storm basin plan in Appendix A.

All surface runoff from the proposed development and adjacent subdivision to the south end up in the Pipestone Creek.

The pre-development surface runoff was not estimated for this report as a standard for limiting post-development peak runoff rates. Rather a pre-development release rate of 2.25 L/s/ha was adopted, being the recommended pre-development release rate by Alberta Environment for the proposed development, see enclosed email in Appendix B.

Shipway Development N.W.1/4 Sec., 28-47-24-W4M Stormwater Management Report

2.1 Post-Development Surface Drainage

The grading plan of the proposed site in Basin 1 drains into the adjacent ditches. The proposed development drains in all four directions, an adjacent ditch is designed to pick up all major flows during minor and major storm events. Storm drainage from Basin 5 has been re-routed to drain south to future Basin 1 pond. From our discussions with the County of Wetaskiwin planning and development staff, it was mentioned that there were some ponding issues with the drainage system northwest of the intersection of Range Road 244 and Township Road 475, storm Basin 5 was was re-routed to minimize the impact of flooding to the northwest drainage system. See enclosed Appendix 1, Figure 3 – Post/Future Storm Basin Development Plan, shows the overall grading concept and storm pond for the proposed development.

Rainfall runoff from minor or major events will be conveyed by a ditch system and directed to the stormwater management facility located in the lowest part of the property, in the southwest corner of the above mentioned corner section. The collected runoff will be detained temporarily in the wet pond, treated and released at a controlled rate to the existing ditches eventually ending up in Pipestone creek.

Post-development runoff will be managed (detained, treated and released at a controlled rate) by the stormwater management facility. The Pond manages runoff from a larger portion of Proposed Storm Basin 1 and Future Basin 1, approximately 21.3 ha of the total site area, 9.88 ha is for the proposed site development. The pond will be sized to handle flows as a result of the development.

Surface runoff quantities and peak flow rates were determined for each catchment using SWMM5. The detailed results of the simulations of the 1 in 100 year design storm event are included in Appendix C.

3.0 HYDROLOGIC ANALYSIS OBJECTIVES

Alberta Environment's stormwater management criteria require that postdevelopment off-site discharges do not exceed pre-development discharges. Post-development flows must be stored or otherwise attenuated to the predevelopment rates to be released once the peak runoff event has subsided. Rainfall-runoff relationships were developed for both the pre-development and post-development scenarios.

3.1 Design Rainfall Event

The 1 in 100 year, 24-hour duration design storm event for the Edmonton Municipal Airport was used for runoff simulations in accordance with the County of Wetaskiwin Engineering Servicing Standards. The 1 in 100 year rainfall depth is approximately 127 mm based on an Intensity Duration Frequency (IDF) curve data for the period from 1914-1995 with 63 years of record. The 24-hour duration design storm event is based on the Huff distribution (First-Quartile 50% Probability) and the peak intensity of the 1 in 100 year event is 18.6 mm/hr.

A long-duration storm was selected based on the recommendations found in the AENV Stormwater Management Guidelines (1999) suggesting that such storms provide a better representation of runoff for rural areas and also for the sizing of stormwater detention facilities.

Refer to Appendix B for the Hydrologic Parameters for post development.

3.2 Hydrologic Analysis

Catchment areas were delineated based on the grading plan for the proposed subdivision. Hydrologic response parameters were estimated for the catchments including percentage imperviousness, surface slopes and infiltration parameters. The percentage imperviousness used in determining runoff coefficients for the different catchments is in accordance with the relation:

C = 0.95(% Impervious) + 0.05(1 - % Impervious)

A common surface slope of 1.2% was assigned to most catchments. Other common hydrologic response parameters are shown in Table 3-1 below. The depression storage values used for modelling in Table 3-1 are very conservative values which will produce the maximum amount of runoff for the respective sub-areas.

	The last science of the second states and the	u	a number paramete
Parameter	Typical Range of Values	Selected Parameter Value	Comments On Selected Value
Depression Storage (mm)			Solected Value
Pervious sub-area	2.5 - 7.6	2.54	Low end of Lawn
Impervious sub-area	13-25	1.2	Low end for Impervious
Manning's n for overland flow	1.0 2.0	1.5	surraces
Pervious sub-area	0.05 - 0.80	0.15	Short prairie grass
Impervious sub-area	0.011-0.030	0.029	Gravel Surface

Table 3-1 Pervious and Impervious Sub-Area Loss and Runoff Parameters

Infiltration was modelled using the Green-Ampt formulation with the parameters shown in Table 3-2 representing silt loam soils typical of surficial soils in and around the greater Edmonton region the proposed site. If required the pond will be lined with a 1m deep clay liner that meet the standards of Alberta Environment. The geotechnical recommendation will determine if a liner is required. A copy of the geotechnical report will be submitted as soon as it becomes available. The Green-Ampt formulation is a physically-based infiltration model used widely and is consistent with other applications in SWMM including subsurface flow for Low Impact Development (LID) applications modelling.

	Ciccil Ampt III	intration Paran	ieters	
Parameter	SWMM Input File Name	Typical Range of Values	Selected Parameter Value	Comments On Selected
Soil capillary suction (mm)	Suction	40 200	value	value
Soil saturated hydraulic conductivity	Ouction	49 - 320	1/0	Silt Loam
(mm/hr)	Conduct	0.25 - 120	6.6	Silt Loam
miliar son moisture deficit	InitDef	0 - 1	0	Saturated

Table 3-2	Green-Ampt	Infiltration	Parameters
			I MIMIIGLEIS

The land use represented in the SWMM model of the proposed site with their assigned runoff coefficients (% imperviousness in SWMM) are presented in Table 3-3. The percentage imperviousness assigned for the different land uses are very conservative to account for the higher runoff expected for the rare 1 in 100 year storm event. This resulted in an overall average percentage imperviousness of 65%, a value that will not underestimate the potential runoff to be generated by the development of the proposed site.

Table 3-3	Characteristics of Different Land Uses Represented In the Proposed
F	Development Site Plan

Land use	Total Area (ha)	% Imperviousness
Grassed Area	0.4	20
Graveled Area	9.48	65
Pond Surfaces	0.9	85
Total	10.78	

3.3 Rainfall-Runoff Model Results

The performance of the stormwater management facility (pond) was tested with the SWMM simulations of the 1 in 100 year design storm event. The simulated peak discharge rate from the pond is presented in Table 3-4. The release rate from the pond was modeled by orifice flow from the pond via a welded plate to the corrugated steel pipe. The orifice was sized to limit the peak release rate of runoff from the pond to 2.25 L/s/ha for maximum depth of water in the pond at the High Water Level (HWL).

....

lable 3-4	Pond Characteristics and Computed Peak Discharges from the D	
	Drainago Deut Outrine Pont	ds

Pond	Area (ha)	Discharge	Orifice Size (mm)	NWL	HWL	Spillway Elevation
Southwest SWMF	10.79	0.005	405			(m)
	10.70	0.025	105	748.28	749.34	749.65
				1.1	06	

The simulated 1 in 100 year flood elevation and drawdown is shown in Figure 3-1 and Figure 3-1-1 respectively. The peak flood elevation in the Southwest pond is 749.48 m that is 0.31 m below the emergency spillway elevation. The peak release rate from the pond is 0.025 m³/s or 2.32 L/s/ha just above the maximum allowable. The southwest Pond is near or slightly under capacity, peaking just below the emergency spillway elevation by 0.31 m.

10.78* 0.0025 = 0.0247035

61% of the pond volume is available 96 hours from the start of the storm event. In general, engineering standards in Alberta specify that 90% of the active storage volume of the facility should be available within 96 hours. To achieve this, a bigger orifice size will have to be used, but that will let the release rate of the Pond in particular exceed the allowable unit peak discharge of 2.25 L/s/ha.

AREA CONSULTING INC. 15524 47 Street Edmonton, AB T5Y-3L8 Tel (780) 278-4834 Fax (780)457-8232

T I I A A

3.3.1 Runoff Volumes

The total runoff volumes received by the Soutwest pond from the 1 in 100 year design storm event and the maximum percentage utilization of the pond is presented in Table 3-4. With controlled releases from the pond, the maximum utilization of the pond is 87% of total active storage volume between normal water level (NWL) and the spillway elevation provided. Thus the pond is adequately sized to handle the runoff volumes generated by the 1 in 100 year design storm event. Sedimentation will decrease the capacity of the pond over time, but with regular maintenance of the pond including de-silting, the pond should be able to detain runoff volumes from the 1 in 100 year design storm event and release at controlled rate not exceeding the maximum allowable rate of 2.25 L/s/ha without overtopping.

Table 3-4	Maximum	Percentage	Utilization	of Ponds	during th	ne 1 iı	<mark>ו 100</mark> ו	year	Design	Storm

		Event		
Pond	Total Runoff Volume (m ³)	Maximum Stored Runoff Volume (m ³)	Maximum Active Storage Volume HWL - NWL (m ³)	Maximum % Utilization (%)
Southwest Pond	10,446	8,614	9,899	87

4

3.3.2 Runoff Rates

The proposed development increases peak runoff rates during storm events owing to decreased areas for infiltration of stormwater. The peak runoff rates from the development catchments will increase above that of the predevelopment conditions for the same catchments. The development increases peak runoff rates and volumes from the upstream catchments, the release rate from the site is controlled by the use of the stormwater management facility. The pond has been sized to capture the excess runoff volumes produced by the site development of the catchments, detain the runoff and release at controlled rates not exceeding the peak allowable release rate of 2.25 L/s/ha. The total volume of runoff released from the site from the pond will however exceed predevelopment runoff volumes, a condition which is not required to be met.

4.0 CLOSURE

This report has been prepared for the exclusive use of Mr. Bob Shipway. This report is based on, and limited by, the interpretation of data, circumstances, and conditions available at the time of completion of the work as referenced throughout the report. It has been prepared in accordance with generally accepted engineering practices. No other warranty, express or implied, is made.

Please do not hesitate to contact us if you require clarification or have any questions. Area Consulting Inc is prepared to work with you on any further refinements on this conceptual stormwater management plan.

CORPORATE AUTHORIZATION

This document entitled Stormwater Management Report was prepared by AREA Consulting Inc. for Mr. Bob Shipway. The material in it reflects AREA Consulting Inc.'s best judgment in light of the information available to it at the time of preparation. Any such use a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. AREA Consulting Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

P09833

Corporate Permit

Engineer: Ali Shmoury, P. Eng

APPENDIX A

AREA Cor	nsulting Inc.	October 22, 2012
RAWN BY: A.S.	SCALE: NTS	PROJECT No.: 27−082012
EGEND:	Location	
	BOB SH	IIPWAY
OJECT: HIPWAY	STORMWA	TER MANAGEMENT
CATION: CO		SKIWIN, ALBERTA
LE:	Locat	tion Plan

APPENDIX B

1

RE MILLET.txt Terry Chamulak <Terry.Chamulak@gov.ab.ca> Friday, August 31, 2012 2:17 PM From: Sent: To: 'ali.shmoury@telus.net' RE: MILLET Subject: Attachments: Millet_1in100_Pre-Development.pdf Hello Ali, We are currently developing the 1:100 year pre-development basin runoff rate for Central Region. Although we are not quite done we focused our efforts in the Millet region as a result of your request. The recommended 1:100 year pre-development runoff rate for Millet, interpolated from the attached preliminary chart, is 2.25 l/s/ha. TERRY H. CHAMULAK, P. Eng. Hydrologist, Science Team Central Region, Alberta Environment and Water #304, 4920 - 51 Street Red Deer, Alberta T4N 6K8 Phone: (403) 340-7737 Cell: (403) 304-7737 Fax: (403) 340-5022 Email: Terry.Chamulak@gov.ab.ca From: Andrew Patton Sent: August 21, 2012 8:47 AM To: Terry Chamulak Subject: FW: MILLET Hi Terry, When you have a moment, do you have a number? If not just ignore and let me know. Thanks, Andrew From: Ali Shmoury [mailto:ali.shmoury@telus.net] Sent: Monday, August 20, 2012 2:35 AM To: Andrew Patton Subject: MILLET Hi Andrew, Our client is looking to develop a parcel of land approximately 10 ha. The location is in Millet (N.W.1/4 SEC28, 47, 24, W4M). What is an acceptable predevelopment release rate. Look forward for your comments. Thanks Ali Shmoury P. Eng. Project Manager AREA Consulting Inc.

15524 47 Street

RE MILLET.txt

PC T5Y-3L8 Tel (780) 478-4834 Fax (780) 457-8232 Cell (780) 278-4834 ali.shmoury@telus.net www.areaconsulting.ca

This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this email in error please notify the system manager. This message contains confidential information and is intended only for the individual named. If you are not the named addressee you should not disseminate, distribute or copy this e-mail.

Post-development Conditions: Huff Distribution 1:100yr Storm Event

[TITLE] Post-development Conditions: Huff Distribution 1:100yr Storm Event

[OPTIONS] FLOW_UNITS CMS GREEN AMPT INFILTRATION FLOW_ROUTING DYNWAVE START_DATE START_TIME REPORT_START_DATE REPORT_START_TIME 06/01/2001 00:00:00 06/01/2001 00:00:00 END_DATE END_TIME 06/05/2001 00:00:00 SWEEP_START SWEEP_END 01/01 12/31 DRY DAYS 0 REPORT_STEP 00:05:00 WET STEP 00:00:01 DRY STEP 01:00:00 ROUTING_STEP 0:00:01 ALLOW_PONDING NO INERTIAL_DAMPING PARTIAL VARIABLE STEP 0.75 LENGTHENING_STEP Ο MIN SURFAREA 0 NORMAL_FLOW_LIMITED SKIP_STEADY_STATE FORCE_MAIN_EQUATION BOTH NO H-W LINK_OFFSETS MIN_SLOPE DEPTH 0 [EVAPORATION] Parameters ;;Type ;;-----_ _ _ _ _ _ _ _ _ _ _ _ CONSTANT 0.0 DRY ONLY NO [RAINGAGES] Rain Time Snow Data ;; ;;Name Intrvl Catch Source Type ---------;Huff Huff_gage INTENSITY 0:15 1.0 TIMESERIES Huff [SUBCATCHMENTS] Pcnt. Curb Snow Pcnt. Total ;; Width Slope Length Pack Imperv Outlet ;;Name Raingage Area ------- - - -_ _ _ ;;-----SC16 _ _ _ _ Huff_gage 100 0 .68 65 1.2 i1 Huff_gage 100 1.2 0 .63 65 SC17 j5 j2 2.29 145 1.2 0 SC18 65 Huff_gage j6 1.9 65 140 1.2 0 SC19 j3 1.8 65 140 1.2 0 SC20 SC21 Huff_gage j7 1.18 65 120 1.2 0 3 SC22 Huff_gage j9 .5 65 100 0 Huff_gage 0 SC23 j4 .9 65 100 3 0 140 .4 0 SC24 j7 50 0 9 250 1.2 0 SC25 Huff_gage j11 85 [SUBAREAS] N-Perv S-Imperv S-Perv RouteTo PctRouted PctZero ;;Subcatchment N-Imperv N-Perv ;;----SC16 _ _ _ _ _ _ _ _ _ _ _ _ _ -----.029 2.54 25 OUTLET 0.15 1.27 .029 25 OUTLET 1.27 2.54 SC17 0.15 OUTLET .029 1.27 2.54 25 SC18 0.15 1.27 OUTLET .029 2.54 25 SC19 0.15 .029 2.54 OUTLET SC20 0.15 1.27 25 1.27 2.54 25 OUTLET SC21 .029 0.15 SC22 .029 0.15 1.27 2.54 25 OUTLET SC23 .029 0.15 1.27 2.54 25 OUTLET 0.011 1.27 2.54 25 OUTLET SC24 0.15 OUTLET SC25 0.011 0.15 1.27 2.54 25 [INFILTRATION] ;;Subcatchment Suction HydCon IMDmax ;;-----_____ SC16 170 6.6 0 SC17 170 6.6 0 SC18 170 6.6 0 SC19 170 6.6 0 170 SC20 6.6 0

170

6.6

0

SC21
SC22 SC23 SC24 SC25	170 170 170	6.6 6.6 6.6	0 0 0								
[JUNCTIONS]	Truest	Max	Trit	c	lunghargo	Dondod					
;; ;;Name	Invert Elev.	Max. Depth	Deptl	h I	epth	Area					
;; J1 J2 J3	753.11 752.24 751.57	0.6 0.6 0.6 0.6	0 0 0 0	((()))	0 0 0					
J4 J5	751.28 753.28	0.6 .6	0	()	0					
J6	752.76	.6	0	0)	0					
J8	752.25	.6	0	C)	0					
J9 J10	751.90 750.72	.6	0	C)	0					
J11	749.62	.6	0	C)	0					
J12	748.25	1.22	0	C	1	0					
[OUTFALLS] ;; ;Name	Invert Elev.	Outfall Type	Stage Time	e/Table Series	Tide Gate						
;;	748 20	FREE			NO						
	/10.20	INUL			110						
[STORAGE] ;; ;;Name	Invert Elev.	Max. In Depth De	it. pth	Storage Curve	Curve Parama	3			Ponded Area	Evap. Frac.	Infiltrat
SUI	748.28	1.22 0		TABULAR	swpond	1			0	0	
[CONDUITS]											
;; ··Name	Inlet	Out	let		Length	Manning N	Inl Off	et set	Outlet Offset	Init Flow	. Max Flo
;;											
C1 C2	J12 SU1	Out J11	1		12 29.3	.013 .03	0		0	0	0
C3	J11	J10			281.2	.03	0		0	0	0
C4 C5	J10 J4	J4 J3			143 52.25	.03	0		0	0	0
C6	J3	J2			119.5	.03	0		0	0	0
C'7 C8	J2 J4	J1 J9			165	.03	0		0	0	0
C9	J9	J8			90	.03	0		0	0	0
C10 C11	J8 J7	J 7 J 6			119.62	.03	0		0	0	0
C12	J6	J5			166.71	.03	0		0	0	0
[ORIFICES]	Inlet	Out	let		Orifice	Crest	D	isch.	Flap	Open/Clo Time	se
;;											
R1	SU1	J12			BOTTOM	0	0	.65	NO	0	
[XSECTIONS] ;;Link ;;	Shape	Geom1		Geom	2 Gec	om3	Geom4	Ba	rrels		
C1	CIRCULAR	.5		0	0		0	1			
C2 C3	TRAPEZOIDA	AL .6		1	3		3	1			
C4	TRAPEZOID	AL .6		1	3		3	1			
C6	TRAPEZOIDA	AL .6		1	3		3	1			
C7 C8	TRAPEZOID	AL .6 AL 6		1	3		3 3	1			
C9	TRAPEZOID	AL .6		1	3		3	1			
C10 C11	TRAPEZOIDA	AL .6 AL .6		1	3		3	1			
C12	TRAPEZOIDA	AL .6		1	3		3 n	1			
LOSSES]	CIRCULAR	0.102	2		lan Cato		0				
;;LIIK ;;			Avera								
C1 C2	.2	1 1	0 0	N N	0						
C3	.2	1	0	N	0						
C4 C5	.2	1 1	0	N	0						

a.	0	1	0	NTO
C6	.2	1	0	NO
C8	. 4	1	0	NO
C0	2	1	0	NO
C10	. 2	1	0	NO
C11	.2	1	0	NO
C12	.2	1	0	NO
[CURVES]				
;;Name	Туре	X-Value	Y-Value	
;;				
swpond	Storage	0	7354	
swpond		.5	8051	
swpond		1	8779	
swpond		1.22	9101	
[TIMESERIES]	D	m '	TT -]	
;;Name	Date	Time	value	
;; Series	for Take T	rawdown ana	lycic	
Juff	1/1/2001	0.00	U U	
Huff	1/1/2001	0.00	0 359	
Huff		0.30	0.717	
Huff		0:45	1.08	
Huff		1:00	1.43	
Huff		1:15	1.91	
Huff		1:30	2.87	
Huff		1:45	3.82	
Huff		2:00	4.78	
Huff		2:15	5.74	
Huff		2:30	6.38	
Huff		2:45	6.55	
Huff		3:00	6.72	
Huff		3:15	6.89	
Huff		3:30	7.06	
Huff		3:45	6.96	
Huff		4:00	6.67	
Huff		4:15	6.38	
HUII		4:30	6.09	
HUII		4:45	5.8	
Hull Unff		5.15	5.49	
Huff		5.30	4 88	
Huff		5:45	4.57	
Huff		6:00	4.26	
Huff		6:15	4.01	
Huff		6:30	3.75	
Huff		6:45	3.49	
Huff		7:00	3.24	
Huff		7:15	3	
Huff		7:30	2.81	
Huff		7:45	2.62	
Huff		8:00	2.43	
Huff		8:15	2.24	
Huff		8:30	2.1	
HUIT		8:45	2.02	
null		9:00 9.15	1 97	
null Huff		0.30 2:T2	1 79	
Huff		9.20	1 72	
Huff		10:00	1.64	
Huff		10:15	1.57	
Huff		10:30	1.5	
Huff		10:45	1.42	
Huff		11:00	1.35	
Huff		11:15	1.29	
Huff		11:30	1.22	
Huff		11:45	1.16	
Huff		12:00	1.09	
Huff		12:15	1.06	
Huff		12:30	1.02	
Huff		12:45	0.982	
Hutt		13:00	0.944	
HUIÍ		13:15	0.907	
HUII		13:30	0.00/	
HULI		14.00	U.8∠8 0 799	
null Unff		14:00	0.700	
null Huff		14.30	0.721	
Huff		14.45	0 712	
Huff		15:00	0.703	
Huff		15:15	0.694	

Huff Huff <t< th=""><th>1/2/2001 2/1/2001</th><th>$\begin{array}{c} 15:30\\ 15:45\\ 16:00\\ 16:45\\ 16:30\\ 16:45\\ 17:00\\ 17:15\\ 17:30\\ 17:45\\ 18:00\\ 18:15\\ 18:30\\ 18:45\\ 19:00\\ 19:15\\ 19:30\\ 19:45\\ 20:00\\ 20:15\\ 20:30\\ 20:45\\ 21:00\\ 20:45\\ 21:00\\ 20:45\\ 21:00\\ 20:45\\ 21:00\\ 21:15\\ 22:30\\ 22:45\\ 23:00\\ 22:45\\ 23:00\\ 23:45\\ 0:00\\ 0:45\\ 15\\ 0:00\\ 0:15\\ 0:30\\ 0:45\\ 1:00\\ 1:15\\ 1:30\\ \end{array}$</th><th>0.685 0.676 0.668 0.652 0.644 0.636 0.628 0.619 0.611 0.602 0.594 0.586 0.577 0.569 0.558 0.537 0.516 0.496 0.496 0.496 0.447 0.438 0.447 0.438 0.447 0.438 0.447 0.438 0.447 0.438 0.447 0.438 0.447 0.438 0.447 0.438 0.447 0.436 0.4425 0.444 0.425 0.348 0.331 0.314 0.314 0.314 0.314 0.314 0.297 0.288 0.516 1.03 1.55 2.06 2.75 4.12</th></t<>	1/2/2001 2/1/2001	$\begin{array}{c} 15:30\\ 15:45\\ 16:00\\ 16:45\\ 16:30\\ 16:45\\ 17:00\\ 17:15\\ 17:30\\ 17:45\\ 18:00\\ 18:15\\ 18:30\\ 18:45\\ 19:00\\ 19:15\\ 19:30\\ 19:45\\ 20:00\\ 20:15\\ 20:30\\ 20:45\\ 21:00\\ 20:45\\ 21:00\\ 20:45\\ 21:00\\ 20:45\\ 21:00\\ 21:15\\ 22:30\\ 22:45\\ 23:00\\ 22:45\\ 23:00\\ 23:45\\ 0:00\\ 0:45\\ 15\\ 0:00\\ 0:15\\ 0:30\\ 0:45\\ 1:00\\ 1:15\\ 1:30\\ \end{array}$	0.685 0.676 0.668 0.652 0.644 0.636 0.628 0.619 0.611 0.602 0.594 0.586 0.577 0.569 0.558 0.537 0.516 0.496 0.496 0.496 0.447 0.438 0.447 0.438 0.447 0.438 0.447 0.438 0.447 0.438 0.447 0.438 0.447 0.438 0.447 0.438 0.447 0.436 0.4425 0.444 0.425 0.348 0.331 0.314 0.314 0.314 0.314 0.314 0.297 0.288 0.516 1.03 1.55 2.06 2.75 4.12
Huff Huff Huff Huff Huff Huff		2:15 2:30 2:45 3:00 3:15 3:30	8.25 9.17 9.42 9.66 9.91
Huff		3:45	10
Huff		4:00 4:15	9.58 9.17
Huff		4:30 4:45	8.75 8.33
Huff		5:00	7.89
Huff		5:15 5:30	7.45
Huff		5:45	6.57
Huff		6:15	5.76
Huff		6:30	5.39
Huff		7:00	4.65
Huff		7:15	4.31
Huff		7:45	3.77
Huff		8:00	3.5
Huff		8:30	3.02
Huff		8:45	2.91
HUII Huff		9:00 9:15	∠.8 2.69
Huff		9:30	2.58
HUII Huff		9:45 10:00	∠.4/ 2.36
Huff		10:15	2.26
HUII Huff		10:30 10:45	2.15 2.04
Huff		11:00	1.95
Huff Huff		11:15 11:30	1.85 1.76

Huff Huff		11:45 12:00	1.67 1.57
Huff		12:15	1.52
Huff		12:30	1.46
Huff		13:00	1.36
Huff		13:15 13:30	1.3
Huff		13:45	1.19
Huff Huff		14:00	1.13
Huff		14:30	1.04
Huff		14:45	1.02
Huff		15:00	1.01
Huff		15:30	0.984
Huff		15:45	0.972
Huff		16:15	0.949
Huff		16:30 16:45	0.938
Huff		17:00	0.914
Huff		17:15	0.902
Huff		17:45	0.89
Huff		18:00	0.866
HUII Huff		18:15 18:30	0.854
Huff		18:45	0.83
Huff		19:00	0.818
Huff		19:30	0.772
Huff		19:45	0.742
Huff		20:00	0.683
Huff		20:30	0.658
Huff		20:45	0.643
Huff		21:15	0.611
Huff		21:30	0.595
Huff		22:00	0.55
Huff		22:15	0.525
Huff		22:45	0.476
Huff		23:00 23:15	0.452
Huff		23:30	0.403
Huff	2/2/2001	23:45	0.378
Huff	3/1/2001	0:00	0
Huff		0:15	0.619
Huff		0:45	1.86
Huff		1:00	2.48
Huff		1:15	3.3 4.96
Huff		1:45	6.61
Huff		2:00	8.26 9.91
Huff		2:30	11
Huff Huff		2:45	11.3
Huff		3:15	11.9
Huff		3:30	12.2
Huff		4:00	11.5
Huff		4:15	11 10 F
Huff		4:30	10.5
Huff		5:00	9.49
Huff Huff		5:15 5:30	8.95 8.42
Huff		5:45	7.89
Huff		6:00	7.36
Huff		6:30	6.48
Huff		6:45	6.03
Huff Huff		7:00 7:15	5.59 5.17
Huff		7:30	4.85
Huff		7:45	4.52

Huff		8:00	4.2
Huff		8:15	3.88
Huff		8:30	3.63
Huff		8:45	3.5
HULL		9:00	3.36
Huff		9:15	3.23
Huff		9:30	2 97
Huff		10.00	2.57
Huff		10:15	2.71
Huff		10:30	2.58
Huff		10:45	2.45
Huff		11:00	2.34
Huff		11:15	2.23
Huff		11:30	2.11
Huff		11:45	2
Huff		12:00	1.89
HUII		12:15	1.82
HULL Wuff		12:30	1.76
Huff		13,00	1.7
Huff		13.15	1 57
Huff		13:30	1.5
Huff		13:45	1.43
Huff		14:00	1.36
Huff		14:15	1.29
Huff		14:30	1.25
Huff		14:45	1.23
Huff		15:00	1.21
Huff		15:15	1.2
Huff		15:30	1.18
HULL		15:45	1.1/
Huff		16:00	1.15
Huff		16:15	1 13
Huff		16.45	1 11
Huff		17:00	1.1
Huff		17:15	1.08
Huff		17:30	1.07
Huff		17:45	1.06
Huff		18:00	1.04
Huff		18:15	1.03
Huff		18:30	1.01
Huff		18:45	1
Huff		19:00	0.983
HULL		19:15	0.964
Huff		19:30	0.920
Huff		20.00	0.856
Huff		20:15	0.82
Huff		20:30	0.791
Huff		20:45	0.772
Huff		21:00	0.753
Huff		21:15	0.734
Huff		21:30	0.715
Huff		21:45	0.69
Huff		22:00	0.661
HULL		22:15	0.631
HULL		22:30	0.602
Huff		22.45	0.572
Huff		23.15	0.513
Huff		23:30	0.484
Huff		23:45	0.454
Huff	3/2/2001	0:00	0.425
Huff	4/1/2001	0:00	0
Huff		0:15	0.751
Huff		0:30	1.5
Huff		0:45	2.25
Huii		1:00	3
null Unff		1.20	4 6
null Huff		1.30	0 8 01
Huff		2:00	10
Huff		2:15	12
Huff		2:30	13.4
Huff		2:45	13.7
Huff		3:00	14.1
Huff		3:15	14.4
Huff		3:30	14.8
Huff		3:45	14.6
Huff		4:00	14

Huff		4:15	13.3
Huff		4:30	12.7
Huff		4:45	12.1
HUII		5:00	11.5
Huff		2:12	10.9
Huff		5.45	9 56
Huff		6.00	8 92
Huff		6:15	8.39
Huff		6:30	7.85
Huff		6:45	7.31
Huff		7:00	6.78
Huff		7:15	6.27
Huff		7:30	5.88
Huff		7:45	5.48
Huff		8:00	5.09
HULL		8:15	4.7
Huff		8:30	4.4
Huff		9.00	4 08
Huff		9.00	3.92
Huff		9:30	3.75
Huff		9:45	3.6
Huff		10:00	3.44
Huff		10:15	3.29
Huff		10:30	3.13
Huff		10:45	2.97
Huff		11:00	2.83
HULL		11:15	2.7
HULL Vuff		11:30	2.50
Huff		12.00	2.42
Huff		12:15	2.21
Huff		12:30	2.13
Huff		12:45	2.05
Huff		13:00	1.98
Huff		13:15	1.9
Huff		13:30	1.82
Huff		13:45	1.73
Huff		14:00	1.65
Hutt		14:15	1.57
HUII		14:30	1.51
Huff		15.00	1.49
Huff		15:15	1.45
Huff		15:30	1.43
Huff		15:45	1.42
Huff		16:00	1.4
Huff		16:15	1.38
Huff		16:30	1.37
Huff		16:45	1.35
Huff		17:00	1.33
HULL		17.20	1.31
Huff		17:30	1.28
Huff		18:00	1.26
Huff		18:15	1.24
Huff		18:30	1.23
Huff		18:45	1.21
Huff		19:00	1.19
Huff		19:15	1.17
Huff		19:30	1.12
HUII		19:45	1.08
HULL		20:00	1.04
Huff		20:15	0.954
Huff		20:30	0.936
Huff		21:00	0.913
Huff		21:15	0.89
Huff		21:30	0.867
Huff		21:45	0.836
Huff		22:00	0.801
Huff		22:15	0.765
Huff		22:30	0.729
HUII		22:45	0.693
HUII		∠3:UU 23.1E	0.658
Huff		23:15,	0.586
Huff		23:45	0.55
Huff	4/2/2001	0:00	0.515
Huff	5/1/2001	0:00	0
Huff		0:15	0.848

Huff	0:30	1.7
Huff	0:45	2.54
HUII Huff	1:00	3.39
Huff	1:30	6.78
Huff	1:45	9.04
Huff	2:00	11.3
Huff	2:15	13.6
HUII	2:30	15.1
Huff	2:45	15.5
Huff	3:15	16.3
Huff	3:30	16.7
Huff	3:45	16.5
HUII	4:00	15.8
Huff	4:15	14.4
Huff	4:45	13.7
Huff	5:00	13
Huff	5:15	12.3
HUII	5:30	11.5
Huff	5:45	10.8
Huff	6:15	9.47
Huff	6:30	8.87
Huff	6:45	8.26
HUII Huff	7:00	7.66
Huff	7:15	6.64
Huff	7:45	6.19
Huff	8:00	5.75
Huff	8:15	5.31
Huff	8:30	4.97
Huff	9:00	4.6
Huff	9:15	4.42
Huff	9:30	4.24
HULL	9:45	4.06
Huff	10:15	3.71
Huff	10:30	3.54
Huff	10:45	3.36
Hutt	11:00	3.2
Huff	11:15	2.89
Huff	11:45	2.74
Huff	12:00	2.59
Huff	12:15	2.5
Huff	12:30	2.41
Huff	13:00	2.23
Huff	13:15	2.14
Huff	13:30	2.05
Huff	13:45	1.96
Huff	14:15	1.77
Huff	14:30	1.7
Huff	14:45	1.68
Huff	15:00	1.64
Huff	15:30	1.62
Huff	15:45	1.6
Huff	16:00	1.58
HUII Huff	16:15	1.56
Huff	16:45	1.52
Huff	17:00	1.5
Huff	17:15	1.48
Huff	17:30	1.46
Huff	18:00	1.44
Huff	18:15	1.4
Huff	18:30	1.39
Huff	18:45	1.37
HULL Huff	19:00 19.15	1.35
Huff	19:30	1.27
Huff	19:45	1.22
Huff	20:00	1.17
HUII Huff	20:15	1.12
Huff	20:30	1.06

Huff		21:00	1.03
Huff		21:15	1.01
HUII Huff		21:30	0.979
Huff		22:00	0.904
Huff		22:15	0.864
Huff		22:30	0.824
HUII Huff		22:45	0.783
Huff		23:00	0.743
Huff		23:30	0.662
Huff		23:45	0.622
Huff	5/2/2001	0:00	0.581
Huff	0/1/2001	0:00	0.945
Huff		0:30	1.89
Huff		0:45	2.83
Huff		1:00	3.78
Huff		1:30	7.56
Huff		1:45	10.1
Huff		2:00	12.6
Huff		2:15	15.1
Huff		2:30	17.3
Huff		3:00	17.7
Huff		3:15	18.2
Huff		3:30	18.6
HUII Huff		3:45	18.3
Huff		4:15	16.8
Huff		4:30	16
Huff		4:45	15.3
HUII Huff		5:00	14.5
Huff		5:30	12.8
Huff		5:45	12
Huff		6:00	11.2
Huff		6:15	10.6
Huff		6:45	9.2
Huff		7:00	8.53
Huff		7:15	7.89
Huff		7:30	7.39
Huff		8:00	6.41
Huff		8:15	5.91
Huff		8:30	5.53
HUII		8:45	5.33
Huff		9:15	4.93
Huff		9:30	4.72
Huff		9:45	4.53
Huff		10:00	4.33
Huff		10:30	3.94
Huff		10:45	3.74
Huff		11:00	3.57
Huff		11:15	3.22
Huff		11:45	3.05
Huff		12:00	2.88
Huff		12:15	2.78
Huff		12:30	∠.68 2.59
Huff		13:00	2.49
Huff		13:15	2.39
Huff		13:30	2.28
Huff		13:45	2.18
Huff		14:15	1.97
Huff		14:30	1.9
Huff		14:45	1.88
nuir Huff		15:00 15:15	1.83
Huff		15:30	1.8
Huff		15:45	1.78
Huff		16:00	1.76
nulI Huff		16:15 16:30	⊥./4 1.72
Huff		16:45	1.7
Huff		17:00	1.68

Huff Huff Huff Huff Huff Huff Huff Huff		$17:15 \\ 17:30 \\ 17:45 \\ 18:00 \\ 18:15 \\ 18:30 \\ 18:45 \\ 19:00 \\ 19:15 \\ 19:30 \\ 19:45 \\ 20:00 \\ 20:15 \\ 20:30 \\ 20:45 \\ 21:00 \\ 21:15 \\ 21:30 \\ 21:45 \\ 22:00 \\ 75 \\ 75 \\ 21:5 \\ 22:00 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ $	1.65 1.63 1.59 1.56 1.54 1.52 1.5 1.47 1.42 1.36 1.31 1.25 1.21 1.18 1.15 1.12 1.09 1.05 1.01
Huff Huff Huff Huff Huff Huff Huff Huff	6/2/2001 7/1/2001	22:30 22:45 23:00 23:15 23:30 23:45 0:00 0:15 0:30 0:45 1:00 1:15 1:30 1:45 2:00 2:15 2:30 2:45	0.918 0.873 0.828 0.738 0.693 0.648 0 1.04 2.08 3.12 4.16 5.55 8.33 11.1 13.9 16.7 18.5 19 19 5
Huff Huff Huff Huff Huff Huff Huff Huff		3:00 3:15 3:30 3:45 4:00 4:15 4:30 4:45 5:00 5:15 5:30 5:45 6:00 6:15 6:30 6:45 7:00 7:15 7:30 7:45 8:00 8:15	19.5 20 20.5 20.2 19.4 18.5 17.7 16.8 15.9 15 14.2 13.3 12.4 11.6 10.9 10.1 9.4 8.69 8.15 7.6 7.06 6.51
Huff Huff Huff Huff Huff Huff Huff Huff		8:30 8:45 9:00 9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15	6.1 5.87 5.65 5.43 5.21 4.99 4.77 4.56 4.34 4.12 3.93 3.74 3.55 3.36 3.17 3.07 2.96 2.85 2.74 2.63

Huff Huff Huff Huff Huff Huff Huff Huff	13:3 13:4 14:1 14:3 14:4 15:0 15:1 15:3 15:4 16:0 16:1 16:3 16:4 17:0 17:1 17:3 17:4 18:0 18:1 18:3 18:4 19:0 19:1 19:3 19:4 20:0 20:1 20:3 20:4 21:0 22:1 22:3 22:4 23:0 23:1 23:1 23:1 23:1 23:1 23:1 23:3 23:4 7/2/2001 0:00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
[REPORT] INPUT YES CONTROLS NO SUBCATCHMENTS AL NODES ALL LINKS ALL	L	
[TAGS]		
[MAP] DIMENSIONS 3400. Units None	093 5377.225 5678	3.267 8712.692
[COORDINATES] ;;Node	X-Coord	Y-Coord
,, J1	3962.119	8325.472
J2	4002.587	7708.346
J 3	4002.587	7253.090
J5	5038.588	8352.083
J6	5058.126	7703.439
۲U) אד	5069.848	7277.523
J9	4683.007	7027.443
J10	3600.632	7023.536
J11	3616.262	6144.350
J12 Out1	3815.544	5749.694
SU1	3756.931	5964.606
[VERTICES]	V. Coord	V. Coord
;;⊔1NK	x-coora	1-Coora
C6	4003.103	7687.809
[Polygons] ;;Subcatchment	X-Coord	Y-Coord

;;		
SC16	4063.288	8548.041
SC16	4073.404	8325.472
SC16	4579.245	8355.822
SC16	4548.894	8558.158
SC16	4063.288	8537.925
SC17	4556.099	8539,001
SC17	4581 859	8358 686
SC17	5012 408	8351 326
SC17	5008 728	8561 080
SC17	4545 060	8546 361
SC19	4059 212	0340.301
SC18	4662 460	0323.300
2C10	4505.455	0351.320 770E 740
SC10	4014.978	7725.742
2019	4066.672	//14./02
5010	4059.312	8332.926
SC19	4567.139	8351.326
SCIP	4618.658	7725.742
SCI9	5027.127	7707.342
SCI9	5008.728	8351.326
SCI9	4567.139	8351.326
SC20	4618.658	7714.702
SC20	4062.992	7707.342
SC20	4074.032	7262.073
SC20	4692.256	7273.113
SC20	4611.298	7725.742
SC21	4618.658	7718.382
SC21	4699.616	7273.113
SC21	5027.127	7269.433
SC21	5027.127	7707.342
SC21	4618.658	7722.062
SC22	4699.616	7269.433
SC22	4681.216	7055.999
SC22	5034.487	7067.038
SC22	5034.487	7273.113
SC22	4699.616	7269.433
SC23	4077.712	7262.073
SC23	4695.936	7273.113
SC23	4677.536	7048.639
SC23	4070.352	7048.639
SC23	4074.032	7265.753
SC24	5048.487	7049.740
SC24	5022.728	8547.462
SC24	5574.714	8554.822
SC24	5574.714	8098.514
SC24	5387.039	8098.514
SC24	5390.719	7053.420
SC24	5048.487	7057.100
SC25	4074.032	7041.279
SC25	4066.672	7026.559
SC25	3739.160	7030.239
SC25	3746.520	6949.281
SC25	3871.637	6827.844
SC25	3875.317	6607.050
SC25	3956.275	6555.531
SC25	4246.987	6191.220
SC25	4364.744	6172.821
SC25	4364.744	6003.545
SC25	4633.377	5863.709
SC25	4662.817	5554.596
SC25	3525.725	5528.837
SC25	3503.646	7081.758
SC25	4070.352	7044.959
[SYMBOLS]		
; ;Gage	X-Coord	Y-Coord
;;		

APPENDIX C

 $\left[\right]$

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022)

Post-development Conditions: Huff Distribution 1:100yr Storm Event

Raingage Summary

		Data	Recording
Name	Data Source	Туре	Interval
Huff_gage	Huff	INTENSITY	15 min.

Name	Area	Width	%Imperv	%Slope	Rain Gage	Outlet	
SC16	0 68	100 00	65 00	1 2000	Huff gage	J1	
SC17	0.63	100.00	65.00	1.2000	Huff gage	J5	
SC18	2.29	145.00	65.00	1.2000	Huff gage	J2	
SC19	1.90	140.00	65.00	1.2000	Huff_gage	J6	
SC20	1.80	140.00	65.00	1.2000	Huff_gage	J3	
SC21	1.18	120.00	65.00	1.2000	Huff_gage	J7	
SC22	0.50	100.00	65.00	3.0000	Huff_gage	J9	
SC23	0.90	100.00	65.00	3.0000	Huff_gage	J4	
SC24	0.00	140.00	50.00	0.4000	Huff_gage	J7	
SC25	0.90	250.00	85.00	1.2000	Huff gage	J11	

Node Summary

Name	Туре	Invert Elev.	Max. Depth	Ponded Area	External Inflow
	JUNCTION	753.11	0.60	0.0	
J2	JUNCTION	752.24	0.60	0.0	
J3	JUNCTION	751.57	0.60	0.0	
J4	JUNCTION	751.28	0.60	0.0	
J5	JUNCTION	753.28	0.60	0.0	

	J6 J7 J8 J9 J10 J11 J12 Out1 SU1	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL STORAGE		752.76 752.40 752.25 751.90 750.72 749.62 748.25 748.20 748.28	0. 0. 0. 0. 0. 1. 0. 1.	60 60 60 60 60 60 22 50 22	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
	************* Link Summary ************	From Node	To Node		Tyme		Length	*Slope	Roughness
									·····
	C1	J12	Out1		CONDUI	T	12.0	0.4167	0.0130
	C3	J10	J11		CONDUI	T	29.3	0.3912	0.0300
	C4	J4	J10		CONDUI	Т	143.0	0.3916	0.0300
	C5	J3	J4		CONDUI	Т	52.3	0.5550	0.0300
	C7	J1	J2		CONDUI	T T	165.0	0.5273	0.0300
	C8	J9	J4		CONDUI	T	158.5	0.3912	0.0300
	C9	J8	J9		CONDUI	Т	90.0	0.3889	0.0300
	C11	J6	J8 J7		CONDUI	T T	52.1 119.6	0.2876	0.0300
	C12	J5	J6		CONDUI	Ť	166.7	0.3119	0.0300
	R1	SU1	J12		ORIFIC	Е			
	**************************************	***** ummary *****		_					
	Conduit	Shape	Ful Dept	⊥ h	Full Area	Hyd. Rad.	Max. Width	NO. Of Barrels	Full Flow
	C1	CIRCULAR	0.5	0	0.20	0.12	0.50	1	0.24
	C2	TRAPEZOIDAL	0.6	0	1.68	0.35	4.60	1	5.96
	C4	TRAPEZOIDAL	0.6	0	1.68	0.35	4.60	1	1.74 1.74
	C5	TRAPEZOIDAL	0.6	0	1.68	0.35	4.60	1	2.07
	C6	TRAPEZOIDAL	0.6	0	1.68	0.35	4.60	1	2.08
	C8	TRAPEZOIDAL	0.6	0	1.68	0.35	4.60	1	2.02
	C9	TRAPEZOIDAL	0.6	0	1.68	0.35	4.60	1	1.74
	C10	TRAPEZOIDAL	0.6	0	1.68	0.35	4.60	1	1.49
	C12	TRAPEZOIDAL	0.6	0	1.68	0.35	4.60	1	1.53
	**************************************	*********** Continuity	Volume hectare-m		Depth mm				
	*****	****							
	Total Precipitat	ion	1.365		126.629				
	Infiltration Los	s	0.000		29.111				
i	Surface Runoff .		1.044		96.883				
	Final Surface St Continuity Error	corage	0.007		0.636				
,	continuity Error	. (6)	0.000						
ł	*****	*****	Volume		Volume				
]	Flow Routing Con	tinuity	hectare-m	1	0^6 ltr				
1	Dry Weather Infl	.OW	0.000		0.000				
Ţ	Wet Weather Infl	WO.	1.044		10.444				
(Groundwater Infl	.ow	0.000		0.000				
I	External Inflow	· · · · · · · · · · · ·	0.000		0.000				
ł	External Outflow		0.693		6.933				
-	Internal Outflow	•••	0.000		0.000				
1	Initial Stored V	olume	0.000		0.000				
Ē	Final Stored Vol	ume	0.351		3.511				
(Continuity Error	(%)	-0.008						

Time-Step Critical Elements

None

Routing Time Step Summary			
Minimum Time Step	:	1.00	sec
Average Time Step	:	1.00	sec
Maximum Time Step	:	1.00	sec
Percent in Steady State	:	0.00	
Average Iterations per Step	:	2.00	

Total Peak Runoff Runoff Runoff Runoff Runoff Coeff Subcatchment mm mm mm mm mm mm 10^6 ltr CMS SC16 126.63 0.00 0.00 30.47 95.54 0.65 0.03 0.755 SC17 126.63 0.00 0.00 30.69 95.32 2.18 0.10 0.753 SC19 126.63 0.00 0.00 30.64 95.37 1.81 0.08 0.753 SC20 126.63 0.00 0.00 30.52 95.39 1.72 0.08 0.754 SC22 126.63 0.00 0.00 30.36 95.46 1									
SC16126.630.000.0030.4795.540.650.030.755SC17126.630.000.0030.4595.560.600.030.755SC18126.630.000.0030.6995.322.180.100.753SC19126.630.000.0030.6495.371.810.080.753SC20126.630.000.0030.5295.391.720.080.753SC21126.630.000.0030.5495.461.130.050.754SC22126.630.000.0030.4495.570.860.020.755SC23126.630.000.0030.4495.570.860.040.755SC25126.630.000.0012.99112.831.020.040.891	Subcatchment	Total Precip mm	Total Runon mm	Total Evap mm	Total Infil mm	Total Runoff mm	Total Runoff 10 [°] 6 ltr	Peak Runoff CMS	Runoff Coeff
SC17 126.63 0.00 0.00 30.45 95.56 0.60 0.03 0.755 SC18 126.63 0.00 0.00 30.69 95.32 2.18 0.10 0.753 SC19 126.63 0.00 0.00 30.64 95.37 1.81 0.08 0.753 SC20 126.63 0.00 0.00 30.54 95.46 1.13 0.08 0.753 SC21 126.63 0.00 0.00 30.54 95.46 1.13 0.05 0.753 SC22 126.63 0.00 0.00 30.36 95.65 0.48 0.02 0.755 SC23 126.63 0.00 0.00 30.44 95.57 0.86 0.04 0.755 SC25 126.63 0.00 0.00 12.99 112.83 1.02 0.04 0.891	SC16	126.63	0.00	0.00	30.47	95.54	0.65	0.03	0.755
SC18126.630.000.0030.6995.322.180.100.753SC19126.630.000.0030.6495.371.810.080.753SC20126.630.000.0030.6295.391.720.080.753SC21126.630.000.0030.5495.461.130.050.754SC22126.630.000.0030.3695.650.480.020.755SC23126.630.000.0030.4495.570.860.040.755SC25126.630.000.0012.99112.831.020.040.891	SC17	126.63	0.00	0.00	30.45	95.56	0.60	0.03	0.755
SC19126.630.000.0030.6495.371.810.080.753SC20126.630.000.0030.6295.391.720.080.753SC21126.630.000.0030.5495.461.130.050.754SC22126.630.000.0030.3695.650.480.020.755SC23126.630.000.0030.4495.570.860.040.755SC25126.630.000.0012.99112.831.020.040.891	SC18	126.63	0.00	0.00	30.69	95.32	2.18	0.10	0.753
SC20 126.63 0.00 0.00 30.62 95.39 1.72 0.08 0.753 SC21 126.63 0.00 0.00 30.54 95.46 1.13 0.05 0.754 SC22 126.63 0.00 0.00 30.36 95.65 0.48 0.02 0.755 SC23 126.63 0.00 0.00 30.44 95.57 0.86 0.04 0.755 SC25 126.63 0.00 0.00 12.99 112.83 1.02 0.04 0.891	SC19	126.63	0.00	0.00	30.64	95.37	1.81	0.08	0.753
SC21 126.63 0.00 0.00 30.54 95.46 1.13 0.05 0.754 SC22 126.63 0.00 0.00 30.36 95.65 0.48 0.02 0.755 SC23 126.63 0.00 0.00 30.44 95.57 0.86 0.04 0.755 SC25 126.63 0.00 0.00 12.99 112.83 1.02 0.04 0.891	SC20	126.63	0.00	0.00	30.62	95.39	1.72	0.08	0.753
SC22 126.63 0.00 0.00 30.36 95.65 0.48 0.02 0.755 SC23 126.63 0.00 0.00 30.44 95.57 0.86 0.04 0.755 SC25 126.63 0.00 0.00 12.99 112.83 1.02 0.04 0.891	SC21	126.63	0.00	0.00	30.54	95.46	1.13	0.05	0.754
SC23 126.63 0.00 0.00 30.44 95.57 0.86 0.04 0.755 SC25 126.63 0.00 0.00 12.99 112.83 1.02 0.04 0.891	SC22	126.63	0.00	0.00	30.36	95.65	0.48	0.02	0.755
SC25 126.63 0.00 0.00 12.99 112.83 1.02 0.04 0.891	SC23	126.63	0.00	0.00	30.44	95.57	0.86	0.04	0.755
	SC25	126.63	0.00	0.00	12.99	112.83	1.02	0.04	0.891

Node Depth Summary

Node	Туре	Average Depth Meters	Maximum Depth Meters	Maximum HGL Meters	Time Occu days	of Max irrence hr:min
J1	JUNCTION	0.01	0.07	753.18	0	03:46
J2	JUNCTION	0.02	0.15	752.39	0	03:51
J3	JUNCTION	0.02	0.20	751.77	0	03:51
J4	JUNCTION	0.03	0.31	751.59	0	03:59
J5	JUNCTION	0.01	0.08	753.36	0	03:46
J6	JUNCTION	0.02	0.17	752.93	0	03:51
J7	JUNCTION	0.02	0.22	752.62	0	03:51
J8	JUNCTION	0.02	0.19	752.44	0	03:53
J9	JUNCTION	0.02	0.20	752.10	0	03:56
J10	JUNCTION	0.05	0.41	751.13	0	04:02
J11	JUNCTION	0.02	0.18	749.80	0	04:00
J12	JUNCTION	0.11	0.12	748.37	0	21:27
Out1	OUTFALL	0.09	0.10	748.30	0	21:27
SU1	STORAGE	0.76	1.06	749.34	0	21:27

		Maximum	Maximum			Lateral	Total
Node	Туре	Lateral Inflow CMS	Inflow CMS	Occu days l	or Max rrence hr:min	Volume 10 ⁶ ltr	Volume 10 [°] 6 ltr
J1	JUNCTION	0.031	0.031	0	03:44	0.650	0.650
J2	JUNCTION	0.101	0.132	0	03:45	2.183	2.833
J3	JUNCTION	0.080	0.211	0	03:49	1.717	4.550
J4	JUNCTION	0.041	0.439	0	03:54	0.860	9.428
J5	JUNCTION	0.028	0.028	0	03:44	0.602	0.602
J6	JUNCTION	0.084	0.113	0	03:45	1.812	2.414
J7	JUNCTION	0.053	0.165	0	03:48	1.126	3.541
J8	JUNCTION	0.000	0.165	0	03:51	0.000	3.541

J9 J10 J11 J12 Out1 SU1	JUNCTION JUNCTION JUNCTION OUTFALL STORAGE	0.02	3 0.187 0 0.439 4 0.481 0 0.025 0 0.481	0 03: 0 03: 0 03: 0 21: 0 21: 0 04:0	53 C 59 C 59 1 27 C 27 C 00 C	0.478 4. 0.000 9. 0.015 10. 0.000 6. 0.000 6. 0.000 10.	019 430 442 934 933 446	
**************************************	*** ary ***						,	avited.
Surcharging occurs w	when water	rises abo	ove the top	of the hig	ghest cond	luit.		177
Node	Туре	Hours Surcharg	Max . Abov ged	. Height M Ve Crown Meters	Min. Depth Below Rim Meters			drawing 3-
SU1	STORAGE	71.	.19	0.463	0.157		02	on
**************************************	** 77 **						1294	101
**************************************	*** ary ***			\				
Storage Unit	Average Volume 1000 m3	Avg Pcnt Full	E&I Pcnt Loss	Maximum Volume 1000 m3	Max Pcnt Full	Time of Max Occurrence days hr:min	Maximum Outflow CMS	
SU1	6.039	60	0	8,614	86	0 21:27	0.025	
****************************** Outfall Loading Summ ******************************	*** ary ***							
Outfall Node	Flow Freq. Pcnt.	Avg. Flow CMS	Max. Flow CMS	Total Volume 10^6 ltr				
Out1	98.48	0.020	0.025	6.933				
System	98.48	0.020	0.025	6.933				

Link Flow Summary

 \square

Link	Туре	Maximum Flow CMS	Time Occu days	of Max rrence hr:min	Maximum Veloc m/sec	Max/ Full Flow	Max/ Full Depth
C1	CONDUIT	0.025	0	21:27	0.73	0.10	0.23
C2	CONDUIT	0.481	0	04:00	1.92	0.08	0.63
C3	CONDUIT	0.438	0	04:01	0.80	0.25	0.49
C4	CONDUIT	0.439	0	03:59	0.58	0.25	0.60
C5	CONDUIT	0.211	0	03:51	0.47	0.10	0.43
C6	CONDUIT	0.132	0	03:51	0.49	0.06	0.29
C7	CONDUIT	0.031	0	03:46	0.21	0.02	0.19
C8	CONDUIT	0.187	0	03:56	0.41	0.11	0.43
C9	CONDUIT	0.165	0	03:53	0.53	0.10	0.33
C10	CONDUIT	0.165	0	03:51	0.50	0.11	0.34
C11	CONDUIT	0.112	0	03:51	0.37	0.07	0.32
C12	CONDUIT	0.028	0	03:46	0.17	0.02	0.20
R1	ORIFICE	0.025	0	21:27			

***** Flow Classification Summary

Conduit	Adjusted /Actual Length	 Drv	Fracti Up Drv	on of Down Dry	Time : Sub Crit	in Flow Sup Crit	Class Up Crit	Down	Avg. Froude Number	Avg. Flow Change
C1	1.00	0.01	0.00	0.00	0.99	0.00	0.00	0.00	0.82	0.0000
C2	1.00	0.00	0.00	0.00	0.96	0.03	0.00	0.00	0.09	0.0000
C3	1.00	0.00	0.01	0.00	0.99	0.00	0.00	0.00	0.26	0.0000
C4	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.17	0.0000
C5	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.17	0.0000
C6	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.21	0.0000
C7	1.00	0.00	0.15	0.00	0.85	0.00	0.00	0.00	0.07	0.0000
C8	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.15	0.0000
C9	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.21	0.0000
C10	1.00	0.00	0.00	0.00	1.00	0.00	.0.00	0.00	0.20	0.0000
C11	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.16	0.0000
C12	1.00	0.00	0.13	0.00	0.87	0.00	0.00	0.00	0.06	0.0000

No conduits were surcharged.

Analysis begun on: Sun Oct 21 21:10:14 2012 Analysis ended on: Sun Oct 21 21:10:21 2012 Total elapsed time: 00:00:07 1

Application under the *Water Act* for Approvals and/or Licences

This application form is for activit	ies regul	ated under the Wate	er Act.							
Check one or more of the follow	wing to	indicate type of ap	plication							
Licence for Diversion of Water	\boxtimes	Renewal of Diversion	on Licence		Approval for Constru	ucting Works	\boxtimes			
Licence Amendment		Approval Amendm	ent		Preliminary Certifica	ite Amendmer	it 🗌			
Water Act File No. (if applicable))	1								
Applicant										
Name or Business Name:		Bob Shipway			Business Contact: 780-83	1-1200				
Address: Box 58 Cell No.: 780-831-1200										
(include city, province and postal code) Millet, AB TOC 1Z0 Phone No.:										
	Fax No.:									
					E-mail:					
Are you the owner of the lanc	l or und	lertaking?			• Yes ONo					
Authorized Representative	*				Same as Applica	ant				
Project Description										
Tentative Construction Start Date:		17-May-2013	Duration of Co	nstruc	tion:	11-Jul-2013				
Tentative Water Diversion Start Da	te:	17-May-2013	Duration of Wa	ter Div	/ersion/Use:	28/5/13				
Provide a detailed description, i	ncludin	g location of work	s and activities,	relatir	ng to the project an	d attach plan	s:			
Bob Shipway is planning to dev will be developed for pipe stora 28-47-24-W4M, south of towns provide storm water managem pond will hold storage for the 1	velop ap age, the hip 475 ent. The :100 yr	proximately 10.78 surface will be gra and east of Range e pond location is 24hr post-develop	ha of land in the veled. The deve Road 244. One s shown on atta ment flow. A pr	e N.W. lopm storm ched re-dev	1/4 Sec., 28-47-24- ent is located in N.V water pond will be drawing in the repo velopment release re	N4M. The Pa V.1/4 Sec., constructed ort. The stora ate of 2.25 l/s	rcel to ge /ha is			

used for this proposed development.

Wa	nter Sou	rces (L	ocatior	of W	/orks	and	Activi	ties)	: OSu	rface Water	⊖Groundwate	r
Su (if c	r face Wat onstructin	t er - Po g works	int of D i only, cor	versio nplete	on or the fil	Activi rst thre	ty e colur	nns)				
	Water Body Water Diversion/Activity Location Is Construction Annual Maximum											
+	e.g. lak name of se	e, stream, ource, if ki	or nown	1/4	Sec	Twp	Rge	м	Required?	Water Required (cubic metres)	Rate (show units)	(for diversion only)
x	x											
	Plan/Block/Lot UTM Coordinates Zone: Easting (m) Northing (m)											
+ - a x - re	+ - add additional row x - remove current row											
Inc	licate the	• `Point	ofUse	if diffe	rent tł	han the	e`Wate	r Dive	ersion Location(s)'	same loca	tion as source(s)
+	1/4	Sec	Twp	Rge	м	or p	rovide	a ger	neral description	of where the	water will be used	d (below)
x												
	To ensure (http://en	your a p vironme	plication ent.albert	is com a.ca/03	n plete 3222.h	, please itml).	e refer t	o the	`Guidelines for	Licensing Wat	er Diversion Proje	ects'
Sta The	Statement of Confirmation: The information given on this form is true to the best of my knowledge.											
lf yc sigr	ou wish to ature on	sign th paper.	ne form v	with a	n elec	tronic	signat	ture y	ou are bound	with the sam	e force as thoug	gh you had a fixed
	Sig	nature			Da	te of Sig	gning		Prir	nted Name	Co	mpany Name

Application under the *Water Act* for Approvals and/or Licences

Return the completed form to the Alberta Environment Regulatory Approvals Centre:

Regulatory Approvals Centre Main Floor Oxbridge Place	Northern Region E-mail address AENV.NorthWaterApprovals@gov.ab.ca	Submit application for Northern Region
9820 106 Street Edmonton Alberta T5K 2J6	Central Region E-mail address AENV.CentralWaterApprovals@gov.ab.ca	Submit application for Central Region
Telephone: 780-427-6311 Fax: 780-422-0154	Southern Region E-mail address AENV.SouthWaterApprovals@gov.ab.ca	Submit application for Southern Region

PERSONAL INFORMATION COLLECTION AND USE NOTIFICATION

Personal information on this form is collected under the authority of section 33(c) of the Freedom of Information and Protection of Privacy (FOIP) Act and will be used to administer the Water Act and its associated regulations. **This form is a public record and is available to anyone**. All information contained on this form (including personal information) is disclosed by Alberta Environment and Water to anyone requesting a copy in accordance with Section 15(1)(a) of the Water (Ministerial) Regulation. For further information about the collection and use of this information, please contact Alberta Environment and Water's Regulatory Approvals Centre at RAC.Environment@gov.ab.ca or call (780) 427-6311.

WATER (MINISTERIAL) REGULATION - REQUEST FOR CONFIDENTIALITY

As identified in Section 15(4) of the Water (Ministerial) Regulation, If the applicant wishes that a trade secret, process or technical information in the application be kept confidential, the applicant may make a written request to the Director within 30 days after the information is submitted, identifying the information, and requesting that the information be kept confidential and not be disclosed. The written request must identify the specifics of the information to be kept confidential and not to be disclosed. Ultimately, it is the Director who makes the decision regarding the confidentiality of the identified information.

If you are submitting a request to assure confidentiality of certain information such as a trade secret, process or technical information for the Directors consideration, submit this information in a separate attachment to the application form.

Protect Fields

Environment and Sustainable Resource Development Environmental Operations Room 304, Provincial Building 4920 51 Street Red Deer, Alberta T4N 6K8 Telephone: 403-340-7052 Fax: 403-340-5022 www.alberta.ca

File: 00319385

November 27, 2012

Bob Shipway P.O. Box 58 Millet AB TOC 1Z0

Dear Sir:

Re: Shipway Development Application under the Water Act for an Approval To Construct, Operate and Maintain Storm Water Management Works located in NW 28-47-24-W4M

This is further to your October 23, 2012 *Water Act* application submission. Based on the information provided, the proposed activity does not require a *Water Act* approval.

We will proceed with the cancellation of this application and the closure of this file.

Enclosed for your information is a weblink to the *Water Act* Code of Practice for Outfall Structures on Water Bodies which maybe required for the works http://www.environment.alberta.ca/1398.html .

Please noted, future development may require as part of the application a wetland assessment and wetland mitigation / compensation. For your convenience the following are web links located on our website:

Provincial Wetland Restoration/Compensation Fact Sheet

http://www3.gov.ab.ca/env/water/reports/Prov Wetland Rest Comp factsheet.pdf Provincial Wetland Restoration/Compensation Guide February 2007

http://www3.gov.ab.ca/env/water/reports/Prov Wetland Rest Comp Guide.pdf

Administrative Guide for Approvals to Protect Surface Water Bodies under the Water Act http://environment.gov.ab.ca/info/library/6208.pdf

Alberta Water Resources Commission's Wetland Management in the Settled Area of Alberta -An Interim Policy:

http://www3.gov.ab.ca/env/water/reports/1wmsa.pdf.

Please note, that a ground water licence maybe required for the development. Please contact Laura Partridge, Groundwater technologist regarding this licence.

Environmental Protection and Enhancement Act (EPEA) Registrations Required for the Waterworks, Wastewater and Storm Water Works

The development will require an EPEA approval, registration, or authorization under the *Environmental Protection and Enhancement Act* (EPEA) for the construction, operation or reclamation of municipal water, storm water or wastewater systems. Please contact Julian Huang, Municipal Engineer, Alberta Environment, regarding these items.

This should not be taken to mean that you have an authority under federal legislation. Please contact the following offices relating to the application of federal laws:

1

Fisheries Act (Canada) Fisheries and Oceans Habitat Management Central and Arctic Region Prairies Area, Calgary District 7646 - 8 St NE

Calgary, Alberta T2E 8X4 Telephone: 403-292-5160 Fax: 403-292-5173

Navigable Waters Protection Act (Canada)

Transport Canada Navigable Waters Protection Prairies and Northern Region - Marine Canada Place 1100 9700 Jasper Avenue Edmonton, Alberta T5J 4E6 Telephone: 780-495-6325 Fax: 780-495-8607

If you have any questions or comments please contact us at 403-340-7052.

Sincerely,

W 1.

Andrew Patton, P. Eng. Water Administration Engineer

cc: Ali Shimoury, AREA Consulting, Edmonton County of Wetaskiwin

REGISTRATION/LETTER OF AUTHORIZATION For STORM DRAINAGE DETENTION/TREATMENT FACILITIES

Project NameShipway Stormwater ManagementLocationN.W.1/4 Sec., 28-47-24-W4MMunicipalityCounty of Wetaskiwin

I acknowledge that I have reviewed the *Standards and Guidelines for Municipal Waterworks, Wastewater, and Storm Drainage Systems*, January 2006, as well as the *Stormwater Management Guidelines for the Province of Alberta*, January 1999 and certify that the design of the above noted project complies with all of the requirements specified for the construction of the stormwater management facilities.

SIGNED AND STAMPED by a professional engineer. NAME: Ali Shmoury, P.Eng. COMPANY: Area Consulting Inc.

Designs that are found to not be in accordance with the Standards and Guidelines may result in enforcement action and/or referral to APEGGA.

For projects that do not comply with all of the Standards and Guidelines please submit a detailed explanation of the deficiency and why it is, in your professional opinion, necessary.

Alberta Environment Central Region

Approval Process Improvement Pilot Project

Questionnaire Regarding Required Submissions for

Applications of Stormwater Drainage Registrations or Letters of Authorization

This questionnaire outlines minimum information submission requirements listed in the attached "Application Form". This questionnaire will be used to determine submission deficiencies and to streamline Environment & SRD approval process in Central Region under EPEA.

Name of the proposed storm drainage facility: Shipway development N.W.1/4 Sec., 28-47-24-W4M

Question 1: Stormwater Management Report and Engineering Drawings

Yes (X) No () _____ Have you provided a stormwater management report/plan or letter that contains information required in the attached "Application Form" and is signed and stamped by a Professional Engineer, and; engineering drawings that are signed and stamped by a Professional Engineer?

Question 2: Review on Design Details

Yes (X) No () _____ Have you compared the design with AENV Guideline requirements listed in the attached "Application Form" Appendix B (also in AENV Guidelines) for wet ponds and dry ponds? If there are deviations from the noted AENV Guideline requirements, please refer to Question 4.

Question 3: Statement on Complying with AENV Guidelines

Yes (X) No () ______ Have you provided a statement page indicating whether design of the project complies with Alberta Environment Guidelines and that is signed and stamped by a Professional Engineer? Refer to attached 'Application Form' Table 1.

Question 4: Justification for Design Deviation

Yes () No () Have you provided justifications for AENV review (to be attached to the Statement in Question 2) for any design deviations from AENV Guidelines? Refer to Question 3 and page 2 of this questionnaire.

Question 5: Information on Agreement with the Municipality

Yes (X) No () _____ Does local municipality know about the project and have no objection to the construction of the pond? Refer to attached "Application Form" section 4.1(d).

Question 6: System Water Quality Performance

Please refer to the attached "Application Form" section 4.1(a).

Yes (X) No () _____ Is predicted system water quality performance equal to or higher than 85 % removal of sediments of particle size 75 μ m and greater?

Yes (X) No () _____ If you have concluded that predicted system water quality performance of 85% removal of sediments is not necessary for the project, have you provided justifications for AENV review? Refer to page 2 of this juestionnaire.

Company:

Signature: ___Area Consulting Inc._____ (to be signed by a Professional Engineer)

Name and title of the professional engineer: Ali Shmoury, Manager

Iustifications on Design Deviations Required by Question 4:

APPLICATION FORM AND GUIDE FOR REGISTRATION TO CONSTRUCT AND OPERATE A MUNICIPAL STORM DRAINAGE SYSTEM

INTRODUCTION

The attached form and guidelines outline the information required for an application to obtain a Registration to construct and operate a storm drainage system. The application is to be prepared in accordance with the *Environmental Protection and Enhancement Act* (EPEA) and Approval Procedure Regulation 113/93. Please ensure that each section of the application is completed in a concise and clear manner.

It should be noted that a Registration will be issued for storm drainage systems. This Registration will cover the storm drainage collection system and storm drainage treatment facilities. Please be aware that a separate application under the *Water Act* may also be required.

For your information, the general steps and procedures that are followed when reviewing and issuing a registration for storm drainage systems is illustrated by the attached flow chart (Figure 1). Because this is a registration, there is no requirement for public notice, but that the public via a Freedom of Information and Protection of Privacy (FOIP) request may view the application. It is therefore important that the application for this registration contain all the information required and be formatted to facilitate public review.

This application must be completed and forwarded to Alberta Environment and Sustainable Resource Development (ESRD) at the following address:

Alberta Environment and Sustainable Resource Development Regulatory Approvals Centre Main Floor, Oxbridge Place 9820 - 106 Street Edmonton, AB T5K 2J6

Phone: (780) 427-6311 Fax: (780) 422-0154

FOIP STATEMENT: Personal information on this form is collected under the authority of section 33(c) of the Freedom of Information and Protection of Privacy (FOIP) Act and will be used to administer the Environmental Protection and Enhancement Act and its associated regulations. **This form is a public record that is available to anyone**. All information contained on this form (including personal information) is disclosed by Alberta Environment and Sustainable Resource Development to anyone requesting a copy in accordance with Section 2 of the Environmental Protection and Enhancement Act, Disclosure of Information Regulation. For further information about the collection and use of this information please contact Alberta Environment and Sustainable Resource Development - Regulatory Approvals Centre at <u>RAC.Environment@gov.ab.ca</u> or call (780) 427-6311.

FIGURE 1 - THE REGISTRATION PROCEDURE FOR MUNICIPAL STORM DRAINAGE SYSTEMS

lberta

APPLICATION FORM AND GUIDE FOR REGISTRATION TO CONSTRUCT AND OPERATE A MUNICIPAL STORM DRAINAGE SYSTEM

1.0 Administrative Information

1.1 Name of storr	nwater system	Shipway development N.W.1/4 Sec.,28-47-24-W4M							
1.2 Corporate Nan	ne/Address/Phone c	of person/owner responsible for this	stormwater system						
Corporate Name:	Bob Shipway	Contact Bob Shipway Person:							
Address:	P.O. Box 58	Position:							
	Millet AB TOC 1Z0	Phone No.	: 780-237-5137						
		Fax No.:							
		Email:	bdshipway@gmail.com						

Master Drainage Plan

1.4	Do you have a Master Plan for the area?	⊖Yes	No							
	If yes, submit the Master Drainage Plan in support of this storm application If no, what is the timeline for creation of a Master Drainage Plan?									
Sto	Stormwater Management Plan									
1.5	Do you have a Stormwater Management Plan for this development?	Yes	⊖ No							
	If yes, submit the Stormwater Management Plan in support of this storm appli	cation								
1.6	Are there any bylaws or other measures to control the quantity and/ or quality of discharges into the stormwater system? If yes, provide a copy of bylaw(s).	⊖Yes	⊙ No							
Pro	Proposed Stormwater System Description									
Sur 2.1	Surficial Drainage Collection System 2.1 Description (include map of surficial drainage):									

pipe yard that drains into ditches then into a pond. See attaced

2.0

Piped Storm Drainage Collection System

2.2 Description (include signed and stamped engineering drawings of storm piping layout):

3.0 Stormwater Treatment

3.1 Storm Ponds:

(include signed and stamped engineering drawings of storm ponds)

Not applicable to this application

	Storm Ponds	Leg	jal Lan	d Desc	cription	l	GPS Coo	ordinates	Name of the drainage
+	Facility Designation/ Name	1/4	Sec	Twp	Rge	М	Latitude	Longitude	course to which the stormwater is discharged
x		NW	28	47	24	4			county ditch
	Location Description (s	treet ad	dress,	plan-b	t)				
+ X	add another storm pond info remove current row	rmation ro	w						

3.2 Storm Outfalls:

(include signed and stamped engineering drawings of storm outfalls)

Not applicable to this application

Storm Outfalls Legal Land Descript						1	GPS Coordinates		Name of the drainage
+	Facility Designation/ Name	1/4	Sec	Twp	Rge	М	Latitude	Longitude	course to which the stormwater is discharged
x		NW	28	47	24	4			county ditch
	Location Description	(street a	ddress	, plan-	ot)				
+ X	add another storm outfall ir remove current row	nformation	row						

3.3 Permanent Snow Storage Sites:

□ Not applicable to this application

	Permanent Snow Storage	Leg	jal Lan	d Des	criptior	1	GPS Co	ordinates	Name of the drainage
+	Facility Designation/ Name	1/4	Sec	Twp	Rge	м	Latitude	Longitude	course to which the stormwater is discharged
x									
	Location Description	(street a	ddress	, plan-	ot)				
+ ×	add another snow storage remove current row	site inform	ation rov	N					

3.4 Storm Pumping Station:

Does this storm system use any storm pumping stations?

⊖Yes ●No

3.5 Chemical Use:		
Are any chemicals used in the stormwater collection or in the storm ponds?	⊖Yes	No
3.6 Stormwater Security:		
Are any storm ponds fenced?	⊖Yes	●No
3.7 Adequate Outlet:		
For a storm drainage discharge outlet to be considered an adequate outlet, the storm must NOT measurably:	n drainag	e system

- alter the natural peak flow or level of the water body receiving the storm drainage, whether temporarily or permanently;
- change or be capable of changing the location of the water or the direction of flow of water in the water body receiving the storm drainage;
- cause or be capable of causing the siltation or the erosion of any bed or shore of the receiving water body;
- cause or be capable of causing an adverse effect on the aquatic environment.

Yes 🛛 I hereby confirm that the proposed storm system discharge has an adequate outlet.

berta .

Environment and Sustainable Resource Development Application for Registration to Construct and Operate a Municipal Storm Drainage System

4.0 Overall Review

4.1 The information required on the attached Table must be submitted as part of the application to obtain a Registration in accordance with the *Environmental Protection and Enhancement Act*, Approvals Procedure Regulation 113/93.

It should be noted that the extent of information required will depend on the applicant's circumstance to ensure that they have adequately addressed each issue. However, as this application is a public document, it is important that it be as clear and concise as possible. Therefore, the suggested format for submission of the required information should be followed.

In addition to information required in Table 1, please include comments on the following specific technical information:

- a) demonstration of 85% removal of particles sized greater than 75 um; (Municipal Policy and Procedures Manual, http://www.environment.gov.ab.ca/info/library/7278.pdf);
- b) demonstration that post development stormwater flows equal pre-development (before the land was originally stripped) flows;
- c) explain which Storm Drainage Best Management Practices (BMPs) from the Standards and Guidelines for Municipal Waterworks, Wastewater and Storm Drainage Systems (2006) will be used and how they will achieve the above targets. The standards and guidelines can be found at http://environment.gov.ab.ca/info/library/6979.pdf;
- d) include the design documentation outlined in Appendix A;
- e) confirmation by the municipality that they are in agreement with the project; and
- f) comparison to watershed specific release rates and capture volumes, where applicable.¹

http://nosecreekpartnership.com/

¹ For example, within the Nose Creek watershed, reference to how the applicable recommendations in the Draft Nose Creek Water Management Plan are being met, in particular the riparian buffers and release rates that are outlined within the plan. The plan can be found at

Alberta

TABLE 1: REGISTRATION APPLICATION INFORMATION REQUIREMENTS

INFORMATION REQUIREMENT	COMMENTS AND SUGGESTED FORMAT
A general description of the storm drainage system should be provided.	 It is suggested a map of the area be included showing: all storm outfalls and the drainage serviced by each outfall; any stormwater ponds or treatment works; and location of immediate & ultimate discharge points.
A detailed description of the storm drainage system	 The applicant must provide: engineering drawings signed and stamped by a professional engineer; and the designed hydraulic capacity of the system.
A brief description of how the system will be operated / maintained.	The applicant should provide an outline of its proposed operating and maintenance procedures and practices.
A description of projected quantity and quality of stormwater to be discharged to the environment, the receiving environment (watercourse) and the uses of these watercourses.	The applicant should provide information on the estimated quantity/quality of drainage system discharges and provide assessment/comments on the impact of these discharges on the environment and downstream land owners.
A statement stamped and signed by a professional engineer verifying complies of the design with AEW Standards and Guidelines.	 Statement must indicate whether the design of the project complies with all design requirements of: Standards and Guidelines for Municipal Waterworks, Wastewater & Storm Drainage Systems, January 2006; and Stormwater Management Guidelines for the Province of Alberta, January 1999 if a design requirement is not met, it must be clearly identified with the justification for the alternative design.
Any emergency response plans the applicant has to deal with any possible major problems/failures that could occur to the drainage system.	If the applicant has a formal emergency response plan a copy should be submitted with the application. In the absence of such a plan, the applicant should briefly outline the procedure that would be followed in the event of major problems with the drainage system.
A summary of any potential environmental related objections or concerns and the applicant's comments and/or proposed action to address these objections/concerns.	The applicant should attempt to proactively identify and address possible environmental objections/concerns regarding the drainage system.

APPLICATION FORM AND GUIDE FOR REGISTRATION TO CONSTRUCT AND OPERATE A MUNICIPAL STORM DRAINAGE SYSTEM

INTRODUCTION

The attached form and guidelines outline the information required for an application to obtain a Registration to construct and operate a storm drainage system. The application is to be prepared in accordance with the Environmental Protection and Enhancement Act (EPEA) and Approval Procedure Regulation 113/93. Please ensure that each section of the application is completed in a concise and clear manner.

It should be noted that a Registration will be issued for storm drainage systems. This Registration will cover the storm drainage collection system and storm drainage treatment facilities. Please be aware that a separate application under the Water Act may also be required.

For your information, the general steps and procedures that are followed when reviewing and issuing a registration for storm drainage systems is illustrated by the attached flow chart (Figure 1). Because this is a registration, there is no requirement for public notice, but that the public via a Freedom of Information and Protection of Privacy (FOIP) request may view the application. It is therefore important that the application for this registration contain all the information required and be formatted to facilitate public review.

This application must be completed and forwarded to Alberta Environment and Sustainable Resource Development (ESRD) at the following address:

> Alberta Environment and Sustainable Resource Development **Regulatory Approvals Centre** Main Floor, Oxbridge Place 9820 - 106 Street Edmonton, AB T5K 2J6

Phone: (780) 427-6311 Fax: (780) 422-0154

FOIP STATEMENT: Personal information on this form is collected under the authority of section 33(c) of the Freedom of Information and Protection of Privacy (FOIP) Act and will be used to administer the Environmental Protection and Enhancement Act and its associated regulations. This form is a public record that is available to anyone. All information contained on this form (including personal information) is disclosed by Alberta Environment and Sustainable Resource Development to anyone requesting a copy in accordance with Section 2 of the Environmental Protection and Enhancement Act, Disclosure of Information Regulation. For further information about the collection and use of this information please contact Alberta Environment and Sustainable Resource Development - Regulatory Approvals Centre at RAC.Environment@gov.ab.ca or call (780) 427-6311.

FIGURE 1 - THE REGISTRATION PROCEDURE FOR MUNICIPAL STORM DRAINAGE SYSTEMS

berta

APPLICATION FORM AND GUIDE FOR REGISTRATION TO CONSTRUCT AND OPERATE A MUNICIPAL STORM DRAINAGE SYSTEM

1.0 Administrative Information

1.1	1 Name of stormwater system		Shipway development N.W.1/4 Sec.,28-47-24-W4M								
1.2	1.2 Corporate Name/Address/Phone of person/owner responsible for this stormwater system										
Corporate Name: Bob Shipway		Bob Shipway	Contact Person:		Bob Shipway						
Ac	ddress:	P.O. Box 58		Position:							
		Millet AB TOC 1Z0	-	Phone No.:	780-237-5137						
			-	Fax No.:							
			-	Email:	bdshipway@gr	mail.com					
1.3 Ma s 1.4	 1.3 Proposed date for construction: Master Drainage Plan 1.4 Do you have a Master Plan for the area? If yes, submit the Master Drainage Plan in support of this storm application If no, what is the timeline for creation of a Master Drainage Plan? 										
Sto	rmwater Man	agement Plan									
1.5	Do you have a	a Stormwater Manag	gement Plan for this deve	lopment?	• Yes	⊖ No					
	If yes, submit th	e Stormwater Manag	ement Plan in support of this	s storm app	olication						
1.6	 6 Are there any bylaws or other measures to control the quantity and/ OYes No or quality of discharges into the stormwater system? If yes, provide a copy of bylaw(s) 										

2.0 Proposed Stormwater System Description

Surficial Drainage Collection System

2.1 Description (include map of surficial drainage):

pipe yard that drains into ditches then into a pond. See attaced

Piped Storm Drainage Collection System

2.2 Description (include signed and stamped engineering drawings of storm piping layout):

3.0 Stormwater Treatment

3.1 Storm Ponds:

Not applicable to this application (include signed and stamped engineering drawings of storm ponds)

	Storm Ponds Legal Land Description							ordinates	Name of the drainage
+	Facility Designation/ Name	1/4	Sec	Twp	Rge	М	Latitude	Longitude	course to which the stormwater is discharged
х		NW	28	47	24	4			county ditch
	Location Description (s	treet ad	dress,	plan-b	t)				
+ X	add another storm pond info remove current row	rmation ro	w						

3.2 Storm Outfalls:

(include signed and stamped engineering drawings of storm outfalls)

Not applicable to this application

	Storm Outfalls	Leç	gal Lan	d Des	criptior		GPS Co	ordinates	Name of the drainage
÷	Facility Designation/ Name	1/4	Sec	Twp	Rge	М	Latitude	Longitude	course to which the stormwater is discharged
x		NW	28	47	24	4			county ditch
	Location Description	(street a	ddress	, plan-	ot)				
+ X	add another storm outfall ir remove current row	nformation	row						

3.3 Permanent Snow Storage Sites:

Not applicable to this application

	Permanent Snow Storage Legal Land Description							ordinates	Name of the drainage
+	Facility Designation/ Name	1/4	Sec	Twp	Rge	м	Latitude	Longitude	course to which the stormwater is discharged
x									
	Location Description	(street a	ddress	, plan-	block-l	ot)			
+ x	add another snow storage remove current row	site inform	ation rov	N					

3.4 Storm Pumping Station:

Does this storm system use any storm pumping stations?

⊖Yes No

3.5 Chemical Use:		
Are any chemicals used in the stormwater collection or in the storm ponds?	⊖Yes	No
3.6 Stormwater Security:		
Are any storm ponds fenced?	⊖Yes	● No
3.7 Adequate Outlet:		
For a storm drainage discharge outlet to be considered an adequate outlet, the stormust NOT measurably:	m drainag	e system
alter the natural neak flow or level of the water body receiving the storm drainage, whether		

- alter the natural peak flow or level of the water body receiving the storm drainage, whether temporarily or permanently;
- change or be capable of changing the location of the water or the direction of flow of water in the water body receiving the storm drainage;
- cause or be capable of causing the siltation or the erosion of any bed or shore of the receiving water body;
- cause or be capable of causing an adverse effect on the aquatic environment.

Yes 🖾 I hereby confirm that the proposed storm system discharge has an adequate outlet.
berta 🖿

Environment and Sustainable Resource Development Application for Registration to Construct and Operate a Municipal Storm Drainage System

4.0 Overall Review

4.1 The information required on the attached Table must be submitted as part of the application to obtain a Registration in accordance with the *Environmental Protection and Enhancement Act*, Approvals Procedure Regulation 113/93.

It should be noted that the extent of information required will depend on the applicant's circumstance to ensure that they have adequately addressed each issue. However, as this application is a public document, it is important that it be as clear and concise as possible. Therefore, the suggested format for submission of the required information should be followed.

In addition to information required in Table 1, please include comments on the following specific technical information:

- a) demonstration of 85% removal of particles sized greater than 75 um; (Municipal Policy and Procedures Manual, http://www.environment.gov.ab.ca/info/library/7278.pdf);
- b) demonstration that post development stormwater flows equal pre-development (before the land was originally stripped) flows;
- c) explain which Storm Drainage Best Management Practices (BMPs) from the Standards and Guidelines for Municipal Waterworks, Wastewater and Storm Drainage Systems (2006) will be used and how they will achieve the above targets. The standards and guidelines can be found at <u>http://environment.gov.ab.ca/info/library/6979.pdf;</u>
- d) include the design documentation outlined in Appendix A;
- e) confirmation by the municipality that they are in agreement with the project; and
- f) comparison to watershed specific release rates and capture volumes, where applicable.¹

http://nosecreekpartnership.com/

¹ For example, within the Nose Creek watershed, reference to how the applicable recommendations in the Draft Nose Creek Water Management Plan are being met, in particular the riparian buffers and release rates that are outlined within the plan. The plan can be found at

Aberta

TABLE 1: REGISTRATION APPLICATION INFORMATION REQUIREMENTS

INFORMATION REQUIREMENT	COMMENTS AND SUGGESTED FORMAT
A general description of the storm drainage system should be provided.	 It is suggested a map of the area be included showing: all storm outfalls and the drainage serviced by each outfall; any stormwater ponds or treatment works; and location of immediate & ultimate discharge points.
A detailed description of the storm drainage system	 The applicant must provide: engineering drawings signed and stamped by a professional engineer; and the designed hydraulic capacity of the system.
A brief description of how the system will be operated / maintained.	The applicant should provide an outline of its proposed operating and maintenance procedures and practices.
A description of projected quantity and quality of stormwater to be discharged to the environment, the receiving environment (watercourse) and the uses of these watercourses.	The applicant should provide information on the estimated quantity/quality of drainage system discharges and provide assessment/comments on the impact of these discharges on the environment and downstream land owners.
A statement stamped and signed by a professional engineer verifying complies of the design with AEW Standards and Guidelines.	 Statement must indicate whether the design of the project complies with all design requirements of: Standards and Guidelines for Municipal Waterworks, Wastewater & Storm Drainage Systems, January 2006; and Stormwater Management Guidelines for the Province of Alberta, January 1999 if a design requirement is not met, it must be clearly identified with the justification for the alternative design.
Any emergency response plans the applicant has to deal with any possible major problems/failures that could occur to the drainage system.	If the applicant has a formal emergency response plan a copy should be submitted with the application. In the absence of such a plan, the applicant should briefly outline the procedure that would be followed in the event of major problems with the drainage system.
A summary of any potential environmental related objections or concerns and the applicant's comments and/or proposed action to address these objections/concerns.	The applicant should attempt to proactively identify and address possible environmental objections/concerns regarding the drainage system.

Environment and Sustainable Environment and Sustain Resource Development

5.0 Signature Page (Storm System Owner)

- 5.1 The Environmental Protection and Enhancement Act and Regulations, provide a specific definition for the "owner" and "person responsible for a wastewater system or storm drainage system". Therefore, the person(s) responsible/person signing this document should be well familiar with the Environmental Protection and Enhancement Act and the Regulations.
- 5.2 The sections of the Environmental Protection and Enhancement Act and Regulations that are of particular relevance to wastewater system and storm drainage system are:
 - Environmental Protection and Enhancement Act, Part 2, Division 2 (Approvals and a) Certificates); Part 4 (Release of Substances; Part 10 (Enforcement);
 - b) Wastewater and Storm Drainage Regulation 119/93;
 - C) Wastewater and Storm Drainage (Ministerial) Regulation 120/93;
 - d) Approvals Procedure Regulation 113/93
- I certify that I am familiar with the information contained in this application, and that to the best 5.3 of my knowledge and belief, such information is true, complete and accurate.

Corporate Name:	Area Consulting Inc.	
Position:	Manager	
Corporate Address	: 15524 47 Street	
Postal Code:	T5Y 3L8	
Corporate Telephone	e:780-278-4834	Fax:
Date of Application:	May 8, 2013	
Signature:	Ali Shmoury	Digitally signed by Ali Shmoury DN: cn=Ali Shmoury, o, ou, email=ali.shmoury@telus.net, c=CA Date: 2013.05.08 11:34:52 -06'00'
(SIGNED BY STORM	I SYSTEM OWNER)	

berta

Appendix A

Additional Design Documentation to be Included in the Application:

- 1. Please provide plan and elevation view drawings* of the stormwater management system / facilities with the details of:
 - (a) inlet and outlet structure;
 - (b) length to width ratio;
 - (c) side slopes and bottom slopes;
 - (d) the 1:100 year high water level;
 - (e) comparisons of this 1:100 year high water level to the lowest elevation of basement footings in the development;
 - (f) plan view drawing of watershed boundaries and catchment areas draining to each pond in question;
 - (g) predicted water quality performance i.e. 85 % removal of sediments of particle size 75 m and greater
 - * drawings must be stamped and signed by a professional engineer.
- 2. Please provide rationale and supporting documentation used to delineate the maximum flow rate and volumes during a major and minor storm event. Please provide information on the type of model used.
- 3. Verification that there is an adequate outlet.
- 4. Verification on whether this is a new or existing storm outfall.
- 5. Please provide a stamped statement certifying that the design meets the two sets of required AESRD Guidelines.

Appendix **B**

Minimum design features based on Stormwater Management Guidelines for the Province of Alberta, January 1999:

Refer to Section 6.5.1 Wet Ponds - Wet ponds can be designed to meet both flood control and water quality objectives.

General Design Considerations (section 6.5.1.7):

- Minimum water surface area of 2 ha
- Maximum side slopes above active storage zone are 4:1 to 5:1 •
- Maximum interior side slopes in active storage zone are 5:1 to 7:1 .
- Maximum exterior side slopes are 3:1 ۰
- Emergency Spillway for 1:100 yr •

Water Quality Control Design Parameters:

- Permanent pool sized to store the volume of runoff from a 25-mm storm over the contributing area •
- Detention time of 24 hours •
- Length to width ratio shall be from 4:1 to 5:1 •
- Minimum permanent pool depth of 2.0 m •
- Maximum permanent pool depth of 3.0 m •
- Maximum water level is below adjacent house basement footings •
- Maximum active detention storage depth of 2.0 m •

Other⁻

- 1:100 year storm stored within 2m above the permanent pool •
- Detention time of 24 hours •

Forebay Design:

- Length to width ratio of 2:1 or greater •
- Forebay surface area not to exceed one-third of the permanent pool surface area
- Forebay berm should be 0.15 to 0.3 m below the permanent pool elevation •
- Refer to Figure 6.10

Refer to Section 6.5.2 Dry Ponds

General Design Considerations (section 6.5.2.7):

- Storage capacity for up to the 1 in 100 year storm •
- Detention time of 24 hours •
- Maximum storage depth of 1.0 to 1.5 m •
- Maximum water level below adjacent house basement footings •
- Maximum interior side slopes of 4:1 to 5:1 •
- Maximum exterior side slopes of 3:1 •
- Minimum freeboard of 0.6 m •
- Minimum ratio of effective length to effective width of 4:1 to 5:1 •
- Minimum slope on the bottom of the pond of 1 percent (2 percent is preferred) •
- Emergency Spillway for 1:100 yr •
- Refer to Figure 6.11 .

Appendix F

Addendum to Stormwater Management Report

ADDENDUM TO (STORMWATER MANAGEMENT REPORT Shipway Development N.W.1/4 Sec., 28-47-24-W4M)

Submitted to: Bob Shipway Box 58 Millet, Alberta T0C 1Z0

Submitted by:

AREA Consulting Inc. 13204 166 Avenue Edmonton, AB T6V 0J4 Tel (780) 278-4834 ali@areaconsulting.ca

November 5, 2015

Table of Contents

1.0	Introduction	3
1.1	System Overview	3
1.2	2 Post-Development Surface Drainage	
1.3	B Hydrologic Analysis	4
1.4	Rainfall-Runoff Model Results	5
1	1.4.1 Runoff Volumes	9
1	1.4.2 Runoff Rates	9
2.0	Closure	11
Apper	ndix A.Site Location Plan	13
Apper	ndix B.SWMM5 Modeling Results	14

List of Figures

Figure 3-1. Simulated 1 in 100 Year Flood Elevation Southwest Pond Rev	7
Figure 3-2. Simulated 1 in 100 Year Discharge - Southwest Pond Rev	8

List of Tables

Table 6 1.1 criticus and impervious oub-Area 2035 and Runon 1 arameters
Table 3-2. Green-Ampt Infiltration Parameters 5
Table 3-3. Characteristics of Different Land Uses Represented In the Proposed
Development Site Plan
Table 3-4. Pond Characteristics and Computed Peak Discharges from the Ponds6
Table 3-5. Maximum Percentage Utilization of Ponds during the 1 in 100 year Design
Storm Event

1.0 Introduction

Area Consulting Inc. has been commissioned Mr. Bob Shipway, to Update the existing Stormwater Management Report (SWMR) for the addition of 3.98 ha of industrial yard, directly east of the previously approved development portion of land within NW ¼ Sec 28 Twp 47 Range 24 W4th directly east of the Town of Millet, Alberta, as shown on Figure 1, Site Location Plan in Appendix A.

This Addendum presents the design of the proposed SWMR for approval by the County of Wetaskiwin No. 10, and Alberta Environment under the Water Act and Environmental Protection and Enhancement Act. The report includes system design methodology as well as the overall design drawings for review for the proposed development only.

1.1 System Overview

The proposed 3.98 ha development is located within NW ¼ Sec 28 Twp 47 Range 24 W4th directly east of the Town of Millet, Alberta. The site is currently undeveloped. The plan is to expand the existing stormwater management facility to control the post-development runoff rates to pre-development rates.

This addendum identifies the increase of stormwater management facility to control the post-development runoff rates for the additional area of 3.98ha. Design of the stormwater management facility is based on runoff rates resulting from a 1 in 100 year design rainfall event. All system design is based on 1 in 100yr design storm event. Alberta Environment regulations require that the post-development flow rates do not exceed the pre-development flow rates for the 100 year rainfall event.

1.2 Post-Development Surface Drainage

The existing drainage system remains unchanged. Surface runoff quantities and peak flow rates were determined for each catchment using SWMM5 including the 3.98ha. The detailed results of the simulations of the 1 in 100 year design storm event are included in Appendix B.

1.3 Hydrologic Analysis

Catchment areas were delineated based on the grading plan for the proposed subdivision and hydrologic parameters are taken from Alberta Environment for Predevelopment Requirements (Appendix B). Hydrologic response parameters were estimated for the catchments including percentage of imperviousness, surface slopes and infiltration parameters. The percentage imperviousness used in determining runoff coefficients for the different catchments is in accordance with the relation:

$$C = 0.95(\%$$
Impervious) + $0.05(1 - \%$ Impervious)

A common surface slope of 1.2% was assigned to most catchments. Other common hydrologic response parameters are shown in below. The depression storage values used for modelling (Table 3-1) are very conservative values which will produce the maximum amount of runoff for the respective sub-areas.

	Parameter	Typical Range of Values	Selected Parameter Value	Comments On Selected Value
Depr	ression Storage (mm)			
	Pervious sub-area	2.5 - 7.6	2.54	Low end of Lawn
	Impervious sub-area	1.3 - 2.5	1.7	Low end for Impervious surfaces
Manı	ning's n for overland flow			
	Pervious sub-area	0.05 - 0.80	0.15	Short prairie grass
l.	Impervious sub-area	0.011-0.024	0.029	Gravel Surface

Table 3-1. Pervious and	Impervious	Sub-Area I	_oss and	Runoff	Parameters
-------------------------	------------	------------	----------	--------	------------

Infiltration was modelled using the Green-Ampt formulation with the parameters shown in Table 3-2 representing silt loam with clay soils typical of surficial soils near the proposed site. If required the pond will be lined with a 1m wide clay liner that meet the standards of Alberta Environment Standards. The geotechnical recommendation will determine if a liner is required. The Green-Ampt formulation is a physically-based

infiltration model used widely and consistent with other applications in SWMM including subsurface flow for groundwater Low Impact Development (LID) applications modelling.

Parameter	SWMM Input File Name	Typical Range of Values	Selected Parameter Value	Comments On Selected Value
Soil capillary suction (mm)	Suction	49 - 320	219.96	Loam sand with clay
Soil saturated hydraulic conductivity (mm/hr)	Conduct	0.25 - 120	1.524	Loam sand with clay
Initial soil moisture deficit	InitDef	0 - 1	0	Saturated

Table 3-2. Green-Ampt Infiltration Parameters

The land use represented in the SWMM model of the proposed site with their assigned runoff coefficients (% imperviousness in SWMM) are presented in Table 3-3. The percentage imperviousness assigned for the different land uses are very conservative to account for the higher runoff expected for the rare 1 in 100 year storm event. This resulted in an overall average percentage imperviousness of 65%, a value that will not underestimate the potential runoff to be generated by the development of the proposed site.

Table 3-3. Characteristics of Different Land Uses Represented In the ProposedDevelopment Site Plan

Land use	Total Area (ha)	% Imperviousness
Graveled Area	13.86	65%
Pond Surfaces	0.9	85%
Total	14.76	

1.4 Rainfall-Runoff Model Results

The performance of the stormwater management facility (pond) was tested with the SWMM simulations of the 1 in 100 year design storm event. The simulated peak

discharge rate from the pond is presented in Table 3-4. The release rate from the pond was modeled by orifice flow the pond sized to limit the peak release rate of runoff from the pond to 2.25 L/s/ha for maximum depth of water in the pond at the High Water Level (HWL).

Table 3-4. Pond Characteristics and Computed Peak Discharges from the Ponds

Pond	Drainage Area (ha)	Peak Discharge (m³/s)	Orifice size (mm)	NWL	HWL	Spillway Elevation (m)
Southwest SWMF	14.76	0.034	135	748.28	749.10	749.70

The simulated 1 in 100 year flood elevation is shown in Figure 3-1 and the Simulated 1 in 100 Year Discharge - Southwest Pond Rev (drawdown) is shown in Figure 3-1-1. Refer to next two pages for the above figures respectively.

FIGURE 3-1 SIMULATED 1 IN 100 YEAR FLOOD ELEVATION SOUTHWEST POND REV

FIGURE 3-1-1 SIMULATED 1 IN 100 YEAR DISCHARGE - SOUTHWEST POND REV

The peak flood elevation in the Southwest pond is 749.10m that is 0.60 m below the emergency spillway elevation. The peak release rate from the pond is 0.034m³/s or 2.3 L/s/ha just above the maximum allowable. The southwest Pond is near or slightly under capacity, peaking below the emergency spillway elevation by 0.60 m. 60.78% of the pond volume is available 96 hours from the start of the storm event. Generally requirement that is required in engineering standards in Alberta, 90% of the active storage volume of the facility should be available within 96 hours. To achieve this, a bigger orifice size will have to be used, but that will let the release rate of the Pond in particular exceed the allowable unit peak discharge of 2.25 L/s/ha.

1.4.1 Runoff Volumes

The total runoff volumes received by the Southwest pond from the 1 in 100 year design storm event and the maximum percentage of utilization of the pond is presented in Table 3-5. With controlled releases from the pond, the maximum utilization of the pond is 74.71% of total active storage volume between normal water level (NWL) and the spillway elevation provided. Thus the pond is adequately sized to handle the runoff volumes generated by the 1 in 100 year design storm event. Sedimentation will decrease the capacity of the pond over time, but with regular maintenance of the pond including de-silting, the pond should be able to detain runoff volumes from the 1 in 100 year design storm event and release at controlled rate not exceeding the maximum allowable rate of 2.25 L/s/ha without overtopping.

Pond	Total Runoff Volume (m³)	Maximum Stored Runoff Volume (m³)	Maximum Active Storage Volume HWL - NWL (m ³)	Maximum % Utilization (%)
Southwest Pond	14,200	11,729	15,700	74.71

Table 3-5. Maximum	Percentage Utilization	of Ponds during the	e 1 in 100 year	Design Storm
Event				

1.4.2 Runoff Rates

The proposed development increases peak runoff rates during storm events owing to decreased areas for infiltration of stormwater. The peak runoff rates from the development catchments will increase above that of the pre-development conditions for

the same catchments. The development increases peak runoff rates and volumes from the upstream catchments, the release rate from the site is controlled by the use of the stormwater management facilities. The pond has been sized to capture the excess runoff volumes produced by the site development of the catchments, detain the runoff and release at controlled rates not exceeding the peak allowable release rate of 2.5 L/s/ha. The total volume of runoff released from the site from the pond will however exceed pre-development runoff volumes, a condition which is not required to be met.

2.0 Closure

This report has been prepared for the exclusive use of Mr. Bob Shipway. This report is based on, and limited by, the interpretation of data, circumstances, and conditions available at the time of completion of the work as referenced throughout the report. It has been prepared in accordance with generally accepted engineering practices. No other warranty, express or implied, is made.

Please do not hesitate to contact us if you require clarification or have any questions. Area Consulting Inc. is prepared to work with you on any further refinements on this conceptual stormwater management plan.

CORPORATE AUTHORIZATION

This document entitled Stormwater Management Report was prepared by AREA Consulting Inc. for Mr. Bob Shipway. The material in it reflects AREA Consulting Inc.'s best judgment in light of the information available to it at the time of preparation. Any such use a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. AREA Consulting Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

P09833

Corporate Permit

Engineer: Ali Shmoury, P. Eng

Site Location Plan

AREA CONSULTING INC. 13204 166 Avenue Edmonton, AB T6V 0J4 Tel (780) 278-4834 Fax(780)457-8232

Appendix B.

SWMM5 Modeling Results

AREA CONSULTING INC. 13204 166 Avenue Edmonton, AB T6V 0J4 Tel (780) 278-4834 Fax(780)457-8232

1

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.009)

Post-development Conditions: Huff Distribution 1:100yr Storm Event

* * * * * * * * * * * * * * *

Raingage Summary

Name	Data Source	Data Type	Recording Interval
Huff_gage	Huff	INTENSITY	15 min.

Subcatchment Summary

Area	Width	%Imperv	%Slope Rain Gage	Outlet	
0.68	100.00	65.00	1.2000 Huff gage		
0.63	100.00	65.00	1.2000 Huff gage	J5	
2.29	145.00	65.00	1.2000 Huff gage	12	
1.90	140.00	65.00	1.2000 Huff gage	J6	
1.80	140.00	65.00	1.2000 Huff gage	J3	
1.18	120.00	65.00	1.2000 Huff gage	J7	
0.50	100.00	65.00	3.0000 Huff gage	J9	
0.90	100.00	65.00	3.0000 Huff gage	.74	
3.98	198.00	65.00	1.2000 Huff gage	J7	
0.90	250.00	85.00	1.2000 Huff_gage	J11	
	Area 0.68 0.63 2.29 1.90 1.80 1.18 0.50 0.90 3.98 0.90	AreaWidth0.68100.000.63100.002.29145.001.90140.001.80140.001.18120.000.50100.000.90100.003.98198.000.90250.00	AreaWidth%Imperv0.68100.0065.000.63100.0065.002.29145.0065.001.90140.0065.001.80140.0065.001.18120.0065.000.50100.0065.000.90100.0065.003.98198.0065.000.90250.0085.00	AreaWidth%Imperv%SlopeRainGage0.68100.0065.001.2000Huff_gage0.63100.0065.001.2000Huff_gage2.29145.0065.001.2000Huff_gage1.90140.0065.001.2000Huff_gage1.80140.0065.001.2000Huff_gage1.18120.0065.001.2000Huff_gage0.50100.0065.003.0000Huff_gage0.90100.0065.003.0000Huff_gage3.98198.0065.001.2000Huff_gage0.90250.0085.001.2000Huff_gage	AreaWidth %Imperv%Slope Rain GageOutlet0.68100.0065.001.2000 Huff_gageJ10.63100.0065.001.2000 Huff_gageJ52.29145.0065.001.2000 Huff_gageJ21.90140.0065.001.2000 Huff_gageJ61.80140.0065.001.2000 Huff_gageJ31.18120.0065.001.2000 Huff_gageJ70.50100.0065.003.0000 Huff_gageJ90.90100.0065.003.0000 Huff_gageJ43.98198.0065.001.2000 Huff_gageJ70.90250.0085.001.2000 Huff_gageJ11

Node Summary

*******	*
---------	---

Name	Туре	Invert Elev.	Max. Depth	Ponded Area	External Inflow
J1	JUNCTION	753.11	0.60	0.0	
J2	JUNCTION	752.24	0.60	0.0	
J3	JUNCTION	751.57	0.60	0.0	
J4	JUNCTION	751.28	0.60	0.0	
J5	JUNCTION	753.28	0.60	0.0	
J6	JUNCTION	752.76	0.60	0.0	
J7	JUNCTION	752.40	0.60	0.0	
J8	JUNCTION	752.25	0.60	0.0	
J9	JUNCTION	751.90	0.60	0.0	
J10	JUNCTION	750.72	0.60	0.0	
J11	JUNCTION	749.62	0.60	0.0	
J12	JUNCTION	748.25	1.22	0.0	
Out1	OUTFALL	748.20	0.50	0.0	
SU1	STORAGE	748.28	1.22	0.0	

Link Summary ******						
Name	From Nod e	To Node	Туре	Length	%Slope	Roughness
C1	J12	Out1	CONDUIT	12.0	0.4167	0.0130
C2	SU1	J11	CONDUIT	29.3	-4.5782	0.0300
C3	J11	J10	CONDUIT	281.2	-0.3912	0.0300
C4	J10	J4	CONDUIT	143.0	-0.3916	0.0300
C5	J4	J3	CONDUIT	52.3	-0.5550	0.0300
C6	J3	J2	CONDUIT	119.5	-0.5607	0.0300
C7	J2	J1	CONDUIT	165.0	-0.5273	0.0300
C8	J4	J9	CONDUIT	158.5	-0.3912	0.0300
C9	J9	J8	CONDUIT	90.0	-0.3889	0.0300
C10	J8	J7	CONDUIT	52.1	-0.2876	0.0300
C11	J7	J6	CONDUIT	119.6	-0.3010	0.0300
C12	J6	J5	CONDUIT	166.7	-0.3119	0.0300
R1	SU1	J12	ORIFICE			

Cross Section Summary ********

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
C1	CIRCULAR	0.50	0.20	0.12	0.50	1	0.24
C2	TRAPEZOIDAL	0.60	1.68	0.35	4.60	1	5.96
C3	TRAPEZOIDAL	0.60	1.68	0.35	4.60	1	1.74
C4	TRAPEZOIDAL	0.60	1.68	0.35	4.60	1	1.74
C5	TRAPEZOIDAL	0.60	1.68	0.35	4.60	1	2.07
C6	TRAPEZOIDAL	0.60	1.68	0.35	4.60	1	2.08
C7	TRAPEZOIDAL	0.60	1.68	0.35	4.60	1	2.02
C8	TRAPEZOIDAL	0.60	1.68	0.35	4.60	1	1.74
С9	TRAPEZOIDAL	0.60	1.68	0.35	4.60	1	1.74
C10	TRAPEZOIDAL	0.60	1.68	0.35	4.60	1	1.49
C11	TRAPEZOIDAL	0.60	1.68	0.35	4.60	1	1.53
C12	TRAPEZOIDAL	0.60	1.68	0.35	4.60	1	1.55

* * * * * * * * * * * * * * *		
Analysis Options *****		
Flow Units Process Models:	CMS	
Rainfall/Runoff	YES	
RDII	NO	
Snowmelt	NO	
Groundwater	NO	
Flow Routing	YES	
Ponding Allowed	NO	
Water Quality	NO	
Infiltration Method	GREEN_AMPT	
Flow Routing Method	DYNWAVE	
Starting Date	JUN-01-2001	00:00:00
Ending Date	JUN-05-2001	00:00:00
Antecedent Dry Days	0.0	
Report Time Step	00:05:00	
Wet Time Step	00:00:01	
Dry Time Step	01:00:00	

Subcatchment	Total Precip mm	Total Runon mm	Total Evap mm	Total Infil mm	Total Runoff mm	Total Runoff 10^6 ltr	Peak Runoff CMS
**************************************	**** mary ****						
Average Time Step Average Time Step Maximum Time Step Percent in Steady State Average Iterations per Percent Not Converging	Step :	0.50 sec 1.00 sec 1.00 sec 0.00 2.00 0.00					
**************************************	** ry **	0 50 505					
**************************************	******** y Indexes ********						
**************************************	**** Nents ****						
Dry Weather Inflow Wet Weather Inflow Groundwater Inflow RDII Inflow External Inflow Flooding Loss Evaporation Loss Exfiltration Loss Initial Stored Volume Final Stored Volume Continuity Error (%)		$\begin{array}{c} 0.000\\ 1.423\\ 0.000\\ 0.000\\ 0.000\\ 0.956\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.467\\ -0.004 \end{array}$	$\begin{array}{c} 0.000\\ 14.233\\ 0.000\\ 0.000\\ 0.000\\ 9.562\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 4.671\end{array}$				
**************************************	**** 7 h	Volume ectare-m	Volume 10^6 ltr				
Total Precipitation Evaporation Loss Infiltration Loss Surface Runoff Final Storage Continuity Error (%)	· · · · · · · · · · · · · · · · · · ·	1.869 0.000 0.436 1.423 0.009 0.000	$ \begin{array}{r} 126.629\\ 0.000\\ 29.564\\ 96.434\\ 0.632 \end{array} $				
**************************************	**** uity ł	Volume nectare-m	Depth mm				
Routing Time Step Variable Time Step Maximum Trials Number of Threads Head Tolerance	1.00 YES 8 1 0.001	sec 1524 m				÷	

SC16	126.63	0.00	0.00	30.47	95.54	0.65	0.03
SC17	126.63	0.00	0.00	30.45	95.56	0.60	0.03
SC18	126.63	0.00	0.00	30.69	95.32	2.18	0.10
SC19	126.63	0.00	0.00	30.64	95.37	1.81	0.08
SC20	126.63	0.00	0.00	30.62	95.39	1.72	0.08
SC21	126.63	0.00	0.00	30.54	95.46	1.13	0.05
SC22	126.63	0.00	0.00	30.36	95.65	0.48	0.02
SC23	126.63	0.00	0.00	30.44	95.57	0.86	0.04
SC24	126.63	0.00	0.00	30.79	95.22	3.79	0.17
SC25	126.63	0.00	0.00	12.99	112.83	1.02	0.04

* * * * * * * * * * * * * * * * * *

Node Depth Summary

* * * * * * * * * * * * * * * * * * *

Node	Туре	Average Depth Meters	Maximum Depth Meters	Maximum HGL Meters	Time Occu days	of Max irrence hr:min	Reported Max Depth Meters
J1	JUNCTION	0.01	0.07	753.18	0	03:46	0.02
J3	JUNCTION	0.02	0.13	751.77	0	03:51	0.05
J4	JUNCTION	0.04	0.37	751.65	0	04:00	0.11
J5 J6	JUNCTION	0.01 0.02	0.08	752.36 752.93	0	03:46	0.02
J7	JUNCTION	0.03	0.31	752.71	Ő	04:00	0.09
J8	JUNCTION	0.03	0.28	752.53	0	04:00	0.09
J10	JUNCTION	0.03	0.28 0.47	752.18	0	04:00 04:05	0.09
J11	JUNCTION	0.02	0.21	749.83	0	03:34	0.07
J12	JUNCTION	0.13	0.15	748.40	0	21:13	0.05
SU1	STORAGE	0.11 0.58	0.12 0.82	748.32 749.10	0 0	21:13 21:13	0.04 0.25

Node Inflow Summary

Node	Туре	Maximum Lateral Inflow CMS	Maximum Total Inflow CMS	Time Occu days	of Max urrence hr:min	Lateral Inflow Volume 10^6 ltr	Total Inflow Volume 10^6 ltr	Flow Balance Error Percent
J1	JUNCTION	0.031	0.031	0	03:45	0.65	0.65	0.000
J2	JUNCTION	0.101	0.132	0	03:45	2.18	2.83	0.003
J3	JUNCTION	0.080	0.211	0	03:49	1.72	4.55	-0.002
J4	JUNCTION	0.041	0.613	0	04:00	0.86	13.2	-0.017
J5	JUNCTION	0.028	0.028	0	03:45	0.602	0.602	0.000
J6	JUNCTION	0.084	0.113	0	03:45	1.81	2.41	0.004
J7	JUNCTION	0. 2 27	0.340	0	04:00	4.92	7.33	-0.001
J8	JUNCTION	0.000	0.340	0	04:00	0	7.33	-0.002
J9	JUNCTION	0.023	0.362	0	04:00	0.478	7.81	0.004
J10	JUNCTION	0.000	0.613	0	04:00	0	13.2	0.037
J11	JUNCTION	0.044	0.654	0	04:00	1.02	14.2	-0.035
J12	JUNCTION	0.000	0.034	0	21:13	0	9.56	0.003
Out1	OUTFALL	0.000	0.034	0	21:13	0	9.56	0.000
SU1	STORAGE	0.000	0.656	0	04:00	0	14.2	0.085

Node Surcharge Summary

Surcharging occurs when water rises above the top of the highest conduit.

Node	Туре	Hours	ged	Max. Above	Height Crown Meters	Min. Belo M	Depth w Rim leters				
SU1	STORAGE	46	.72		0.217		0.403				
* * * * * * * * * * * * * * * * * * *	** * *										
Node Flooding Sum ***************	mary ****										
No nodes were flo	oded.										
**************************************	**** mmary ****										
	Average Volume	Avg Pont	Evap Pont	Exfil Pont	Ma 	ximum	M	ax '	Time	of Max	Maximum
Storage Unit	1000 m3	Full	Loss	Loss	10	00 m3	Ful	11 (days	hr:min	CMS
SU1	8.164	45	0	0	1	1.729	(65 65	0	21:13	0.034
**************************************	***** ummary ***** Flow Freq	Avg Flow	 P F 1	 1ax Low	Total Volume						
Outfall Node	Pcnt	CMS	(CMS	10^6 ltr						
Out1	98.38	0.028	0.()34	9.562						
System	98.38	0.028	0.0)34	9.562						
**************************************	***										
Link	Туре	Maximum Flow CMS	Time Occu days	of Max arrence hr:min	x Maxim e Velo n m/s	 um c ec	Max/ Full Flow	Max/ Full Depth	- / L 1		
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 B1	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT	0.034 0.656 0.611 0.613 0.211 0.132 0.031 0.362 0.340 0.340 0.112 0.028 0.034		21:13 04:00 04:03 03:51 03:51 03:40 04:00 04:00 04:00 03:54 03:46 03:46	3 0. 3 0. 3 0. 3 0. 4 0. 5 0. 6 0. 7 0. 7 0. 6 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 8 0.	79 39 89 65 40 49 21 56 65 61 27 17	$\begin{array}{c} 0.14\\ 0.11\\ 0.35\\ 0.35\\ 0.10\\ 0.06\\ 0.02\\ 0.21\\ 0.20\\ 0.23\\ 0.07\\ 0.02\\ \end{array}$	0.27 0.62 0.57 0.70 0.47 0.29 0.19 0.54 0.47 0.49 0.40 0.20	- 7 2 7 7 9 9 1 7 9 9		

	Adjusted			Fraction of		Time in Flor		w Class		
Conduit	/Actual	D	Up	Down	Sub	Sup	Up	Down	Norm	Inlet
	Lengtn	Dry	Dry	Dry 	Crit	Crit	Crit	Crit	Ltd	Ctrl
C1	1.00	0.01	0.00	0.00	0.99	0.00	0.00	0.00	0.00	0.00
C2	1.00	0.00	0.00	0.00	0.96	0.04	0.00	0.00	0.96	0.00
C3	1.00	0.00	0.01	0.00	0.99	0.00	0.00	0.00	0.01	0.00
C 4	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.98	0.00
C5	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.99	0.00
C6	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00	0.00
C7	1.00	0.00	0.15	0.00	0.85	0.00	0.00	0.00	0.99	0.00
C8	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.99	0.00
С9	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.93	0.00
C10	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
C11	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00	0.00
C12	1.00	0.00	0.13	0.00	0.87	0.00	0.00	0.00	0.99	0.00

Conduit	Both Ends	Hours Full Upstream	Dnstream	Hours Above Full Normal Flow	Hour s Capacity Limited
C2	0.01	0.01	46.72	0.01	0.01

Analysis begun on: Tue Oct 20 11:38:47 2015 Analysis ended on: Tue Oct 20 11:38:54 2015 Total elapsed time: 00:00:07

Subcatchment Runoff Summary

Runoff Coeff	0.755	0.755	0.753	0.753	0.753	0.754	0.755	0.755	0.752	0.891
Peak Runoff CMS	0.03	0.03	0.10	0.08	0.08	0.05	0.02	0.04	0.17	0.04
Total Runoff 10^6 ltr	0.65	09.0	2.18	1.81	1.72	1.13	0.48	0.86	3.79	1.02
Total Runoff mm	95.54	95.56	95.32	95.37	95.39	95.46	95.65	95.57	95.22	112.83
Total Infil mm	30.47	30.45	30.69	30.64	30.62	30.54	30.36	30.44	30.79	12.99
Total Evap mm	0.00	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00
Total Runon mm	0.00	0.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00	00.00
Total Precip mm	126.63	126.63	126.63	126.63	126.63	126.63	126.63	126.63	126.63	126.63
Subcatchment	SC16	SC17	SC18	SC19	SC20	SC21	SC22	SC23	SC24	SC25

Node	Туре	Average Depth Meters	Maximum Depth Meters	Maximum HGL Meters	Day of Maximum Depth	Hour of Maximum Depth	Maximum Reported Depth Meters
J1	JUNCTION	0.01	0.07	753.18	0	03:46	0.02
J2	JUNCTION	0.02	0.15	752.39	0	03:51	0.05
J3	JUNCTION	0.02	0.20	751.77	0	03:51	0.06
J4	JUNCTION	0.04	0.37	751.65	0	04:00	0.11
J5	JUNCTION	0.01	0.08	753.36	0	03:46	0.02
J6	JUNCTION	0.02	0.17	752.93	0	03:51	0.05
J7	JUNCTION	0.03	0.31	752.71	0	04:00	0.09
J8	JUNCTION	0.03	0.28	752.53	0	04:00	0.09
J9	JUNCTION	0.03	0.28	752.18	0	04:00	0.09
J10	JUNCTION	0.06	0.47	751.19	0	04:05	0.14
J11	JUNCTION	0.02	0.21	749.83	0	03:34	0.07
J12	JUNCTION	0.13	0.15	748.40	0	21:13	0.05
Out1	OUTFALL	0.11	0.12	748.32	0	21:13	0.04
SU1	STORAGE	0.58	0.82	749.10	0	21:13	0.25

Node Depth Summary

Node Inflow Summary

Flow Balance Error Percent	0.000	0.003	-0.002	-0.017	0.000	0.004	-0.001	-0.002	0.004	0.037	-0.035	0.003	0.000	0.085
Total Inflow Volume 10^6 ltr	0.65	2.83	4.55	13.2	0.602	2.41	7.33	7.33	7.81	13.2	14.2	9.56	9.56	14.2
Lateral Inflow Volume 10^6 Itr	0.65	2.18	1.72	0.86	0.602	1.81	4.92	0	0.478	0	1.02	0	0	0
Hour of Maximum Inflow	03:45	03:45	03:49	04:00	03:45	03:45	04:00	04:00	04:00	04:00	04:00	21:13	21:13	04:00
Day of Maximum Inflow	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Maximum Total Inflow CMS	0.031	0.132	0.211	0.613	0.028	0.113	0.340	0.340	0.362	0.613	0.654	0.034	0.034	0.656
Maximum Lateral Inflow CMS	0.031	0.101	0.080	0.041	0.028	0.084	0.227	0.000	0.023	0.000	0.044	0.000	0.000	0.000
Type	JUNCTION	OUTFALL	STORAGE											
Node	J1	J2	J3	J4	J5	J6	J7	J8	J9	J10	J11	J12	Out1	SUI

			Max Height Above	Min Depth Below
		Hours	Crown	Rim
Node	Туре	Surcharged	Meters	Meters
SU1	STORAGE	46.72	0.217	0.403

Node Surcharge Summary

Storage Volume Summary

Maximum Outflow CMS	0.034
Hour of Maximum Volume	21:13
Day of Maximum Volume	0
Maximum Percent Full	65
Maximum Volume 1000 m3	11.729
Exfil Percent Loss	0
Evap Percent Loss	0
Average Percent Full	45
Average Volume 1000 m3	8.164
Storage Unit	SU1

Outfall Node	Flow	Avg.	Max.	Total
	Freq.	Flow	Flow	Volume
	Pcnt.	CMS	CMS	10^6 ltr
Out1	98.38	0.028	0.034	9.562

Outfall Loading Summary

1							
Link	Туре	Maximum Flow CMS	Day of Maximum Flow	Hour of Maximum Flow	Maximum Velocity m/sec	Max / Full Flow	Max / Full Depth
C1	CONDUIT	0.034	0	21:13	0.79	0.14	0.27
C2	CONDUIT	0.656	0	04:00	2.39	0.11	0.62
C3	CONDUIT	0.611	0	04:03	0.89	0.35	0.57
C4	CONDUIT	0.613	0	04:00	0.65	0.35	0.70
C5	CONDUIT	0.211	0	03:51	0.40	0.10	0.47
C6	CONDUIT	0.132	0	03:51	0.49	0.06	0.29
C7	CONDUIT	0.031	0	03:46	0.21	0.02	0.19
C8	CONDUIT	0.362	0	04:00	0.56	0.21	0.54
С9	CONDUIT	0.340	0	04:00	0.65	0.20	0.47
C10	CONDUIT	0.340	0	04:00	0.61	0.23	0.49
C11	CONDUIT	0.112	0	03:51	0.27	0.07	0.40
C12	CONDUIT	0.028	0	03:46	0.17	0.02	0.20
R1	ORIFICE	0.034	0	21:13			

Link Flow Summary

Summary
ssification
Flow Clas

	2	90	Ξ	8	6	0	6	6	33	0	0	6
Normal Flow Limited	0.0	0.9	0.0	0.9	0.9	1.0	0.9	0.9	0.9	0.0	1.0	0.0
Dnstrm Critical	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Upstrm Critical	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	00.00
Super Critical	0.00	0.04	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	00.00
Sub Critical	0.99	0.96	0.99	1.00	1.00	1.00	0.85	1.00	0.99	1.00	1.00	0.87
Dnstrm Dry	0.00	0.00	0.00	.00.00	0.00	0.00	0.00	00.00	0.00	00.00	00.00	00.0
Upstrm Dry	0.00	0.00	0.01	0.00	0.00	00.00	0.15	0.00	0.00	0.00	00.00	0.13
Fully Dry	0.01	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	00.00
Adjusted/ Actual Length	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Conduit	CI	C2	C3	C4	CS	C6	C7	C8	C9	C10	C11	C12

Page 1
Post-development Conditions: Huff Distribution 1:100yr Storm Event REV

Flow Classification Summary

Conduit	Inlet Control
C1	0.00
C2	0.00
C3	0.00
C4	0.00
cs	0.00
C6	0.00
C7	0.00
C8	0.00
C9	0.00
C10	0.00
C11	0.00
C12	0.00

Page 2

Post-development Conditions: Huff Distribution 1:100yr Storm Event REV

Conduit	Hours Both Ends Full	Hours Upstream Full	Hours Dnstream Full	Hours Above Normal Flow	Hours Capacity Limited
C2	0.01	0.01	46.72	0.01	0.01

-

Conduit Surcharge Summary

Appendix G

Traffic Impact Assessment

October 25, 2015

Bob Shipway Box 58 Millet, Alberta T0C 1Z0

Subject: Addition to Shipway Industrial Yard N.W. ¼ Sec., 28-47-24-W4M Traffic Impact Assessment

Area Consulting was retained by Shipway Industrial Yard to prepare a Traffic Impact Assessment for the proposed addition (Phase 1C) to existing development. The development is located within NW ¹/₄ Sec 28 Twp 47 Range 24 W4th directly east of the Town of Millet, Alberta. The developing area is approximately 3.98 ha.

The development is bounded by east of Range Road 244 and South of Township Road 475, west of Block B Plan 982-4390, south boundary directly east of the south boundary of Block A Plan 812-1104 as shown on Figure 1, Location Plan.

The overall purpose of the traffic study is to access the intersection improvements needs under future traffic projection for the horizon years of 2020 and 2035. The 2020 and 2035 were selected as intermediate and ultimate needs of the intersection.

EXISITNG CONDITION

1.1 Existing Roadway

Highway 2A:26 is a provincial two-lane undivided secondary highway primarily running in a north-south orientation. This highway has a paved surface with an average pavement width of 17.8 meter (m), consisting of 3.7m lanes and 1.5m shoulders. Highway 2A serves about 6940 vehicles per day (2011 WAADT). The posted speed on highway is 50 kilometers per hour (km/h) at the intersection with Highway 616 (Twp. Rd 475).

Township Road 475 (Highway 616) is a provincial two-lane undivided secondary highway running in an east-west orientation. The Highway has a paved surface with an average pavement width of 9.4m consisting of 3.7m lanes plus 1.0m shoulder. The road serves about 1570vpd (2011 WAADT). The posted speed is 50km/h.

The existing intersection of Highway 2A/Twp. Rd 475 is a modified Type 3c intersection treatment. The intersection has unconventional acceleration lanes on the shoulder side for right-turning vehicles entering Highway 2A from the intersecting roadways (i.e. Highway 616). Highway 616 intersects Highway 2A at a 90-degree angle and is controlled by a "STOP" sign condition. The intersection approaches have adequate sight distances in all directions.

Vehicular access to the development consists of one inbound lane and one outbound lane. The Access Road form south leg with Twp. Rd 475 and controlled by "STOP" sign.

1.2 Background Traffic Volumes

The 2014 existing turning movement count was obtained from Alberta Transportation (AT) website, including Average Annual Daily Traffic (AADT) volumes and morning (a.m.) and afternoon (p.m.) peak hour volumes. The existing turning movement diagrams are included in Appendix A.

1.3 Existing Development Traffic

The development existing traffic volumes was obtained from Traffic Impact Assessment (TIA) dated 2013 prepared by Area Consulting Inc. The traffic volumes of development are provided below.

Table 1: Development Traffic Volume

					Trip Gen	erated	
Parameters	ITE	Size ¹	Daily	A	N	Ы	И
				IN	OUT	IN	OUT
Shipway Industrial Y	ard						
High-Cube Warehouse	152	830	1394	63	28	31	69

Note: 1. Average land use in size of "1000 sq. feet Gross Floor Area (GFA)" as per ITE

DEVELOPMENT TRAFFIC

The proposed addition to existing facility is approximately 3.98 ha (9.8 acres) in size, and is currently vacant. Site Plan is attached is Appendix D.

2.1 Trip Generation and Assignment

The Institution of Transportation Engineers (ITE) Trip Generation 9th Edition is used to determine the number of trips generated from the proposed addition. For this section, this TIA has used ITE trip generation rate of General Light Industry (ITE 110).

Description of Land use, ITE code, unit size, trip generation rate and trip generation for peak hours are provided in Table 1. Appendix B provides all relevant charts.

Table 2: Trip Generation

		Size	Trip	Genera	ation			Trip Gen	erated	
Parameters	ITE	(Acres)		Rates		Daily	۵	M	P	M
			AADT	AM	РМ		IN	OUT	IN	OUT
General Light Industry	110	9.8	51.8	7.51	7.26	510	61	13	16	56

The trip distribution and assignment of traffic to and from the development is assumed to be similar to previous TIA dated 2013. The trip distribution and traffic assignment are shown in Exhibit 1 and Exhibit 2 in Appendix B.

FUTURE CONDITION

This section will describe the future growth projections, future improvements to the road network and future traffic volumes.

3.1 **Projected Growth**

The growth rate of 2.5% per year was assumed to reflect growth in background traffic volumes. The 2020 and 2035 projected traffic volumes are provided in Appendix A.

3.2 **Anticipated Improvements**

Based on the previous TIA dated August 2013, the following improvement is recommended:

Signalized Intersection at Highway 2A and Township Road 475

3.3 **Future Traffic Volume**

The total traffic volume is the sum of proposed development traffic, existing development traffic and the forecasted background traffic. The resulting total traffic projections are provided in Exhibit 5.0 and 6.0 (See Appendix B).

INTERSECTION OPERATIONS

The 2020 and 2035 total traffic volumes for the study intersections are evaluated using the Synchro/Sim Traffic software which automates the procedures contained in the Highway Capacity Manual 2000.

For the intersection of Highway 2A and Twp. Rd 475, the signalized was assumed with existing intersection layout. The intersection of Twp. Rd 475 with Access Road is Type 1a with stop controlled on Access Road.

Future Traffic Operations with Improvements 4.1

The future peak hours analysis results are included in Table 3 and Table 4 and corresponding worksheets are included in Appendix C.

		A.M. Peak Ho	our		P.M. Peak H	lour
Intersection	LOS	v/c	Delay (sec)	LOS	v/c	Delay (sec)
Highway 2A and Twp.	Rd 475 (Sign	alized)				
EB LTR	В	0.63	19.9	В	0.25	16.6
WB LTR	В	0.20	12.8	В	0.36	18.1
NB LT	В	0.59	173	В	0.59	15.0
NB R	B	0.03	10.8	A	0.02	8.0
SB LT	В	0.45	15.1	В	0.68	17.0
SB R	В	0.01	10.6	A	0.10	8.5
Overall LOS		В			В	
Twp. Rd. 475 and Acce	ss Road (Un	signalized)				
EB TR	Α	0.12	0.0	А	0.14	0.0
WB TL	A	0.00	0.4	А	0.00	0.2
NB LR	B	0.07	10.6	В	0.21	11.9
Overall LOS		Α			Α	

Table 3: 2020 Total Traffic Conditions – Level of Service

NB - Northbound SB - Southbound EB - Eastbound WB - Westbound LTR - Left/Through/Right turn

Internetien	4	A.M. Peak H	lour		P.M. Peak H	lour
Intersection	LOS	v/c	Delay (sec)	LOS	v/c	Delay (sec)
Highway 2A and Twp. F	Rd 475 (Sign	alized)				
EB LTR	С	0.83	29.7	В	0.37	19.6
WB LTR	B	0.23	13.4	C	0.46	21.3
NB LT	В	0.67	17.9	С	0.83	25.6
NB R	A	0.04	9.7	A	0.03	7.1
SB LT	B	0.53	15.3	C	0.86	28.9
SB R	A	0.02	9.8	A	0.13	7.7
Overall LOS		В			С	
Twp. Rd. 475 and Acces	ss Road (Un	signalized)		•		
EB TR	A	0.13	0.0	A	0.17	0.0
WB TL	A	0.11	0.3	A	0.00	0.1
NB LR	В	0.07	11.1	B	0.23	12.9
Overall LOS		Α			Α	

Table 4: 2035 Total Traffic Conditions – Level of Service

Note:

NB - Northbound SB - Southbound EB - Eastbound WB - Westbound LTR - Left/Through/Right turn

As indicated in Table 4 and 5, acceptable level of service A to C are expected at the two intersections. Thus, no further improvements are required from a traffic operations perspective.

CONCLUSION

As a conclusion, in the 2020 and 2035 horizon, the intersection of Highway 2A and Township Road 475 should be signalized. The intersection of Twp. Rd. 475 with Access Road will be "T" intersection with stop controlled on Access Road. Access Road will have two lanes with one lane in each direction (i.e. Type 1a).

We trust that the above meets with your purpose. Should you have any questions, please do not hesitate to contact the undersigned.

Yours truly,

AREA CONSULTING

Reported by:

APPENDIX A

Background Traffic Data And Other Related Information

TURNING MOVEMENT SUMMARY DIAGRAM

TRAFFIC VOLUME, VEHICLE CLASSIFICATION, TRAVEL and ESAL STATISTICS REPORT 2015

Alberta Transportation Planning Branch

1000	181	6-2012 By ConnelStore D	initiana inc	5	trafectio and Net	work Plant	2												
Hwy	83	TCS Muni From	A DECEMBER OF	0	Ka	Km	Lenge	WAADT WS	1% TOS	2 2	V NB	Manhon U %St	1.4	NCM	France M	NON	SU SU	TC	Total
619	~	20 Mela EOF 2E	OF USONA	WIDE24 NOF HORSEMA NJ	48.460	521-08	13.605	1220	1920 01		0.0	8 0	77	2.2	1.9	80	183	30.2	515
811	10	EOF 201	AT HOADLEY	WOF 24 NOF HOBBENA NU			80,035	3	638 84	0	1	8	an .	133	13.2	1.9	187	31.4	108
811	4	4 Priva EOF 24	S OF HOBBENA SJ	WOF \$22 E OF HOBBEMA WU	0000	12,980	12.960	2130	280 91	8	100	5 21	22	8.9	101	4.7	24.4	48.8	73.0
811	4	8 Wein ECF 822	E OF HOBBENA WU	WOF 822 NWOF FERINTOSH EJ	12,050	19,460	6.500	210	660 63		0.1	4 71.6	22 0	957	12	0.0	34.4	171.5	205.0
611	-	12 Vinu EOF 822	NN OF FERNITOSH EJ	WOF 21 S OF NEW NORMAY	10.460	81103	14 843	100	630 74	-	2. 0	3 114	12	24.5	28	1.4	27.3	68.5	028
811	4	EOF 24	8 OF HOBBENA 8J	W OF 21 S OF NEW NORWAY			S01103	1168	1231 84	0 0	5	8	-	14.8	145	5.6	27.8	20.0	107.7
611		E OF 20 J	AT HOADLEY	W OF 21 S OF NEW NORWAY			66.278	240	883 84	8	5	7 63	5	13.9	27.8	13.0	21.0	48.3	70.2
5	3	And the second second	10 miles		10001	1000	20124	- Allow	Color Anna			100		Control of			1000	- 20 ton	1
813	94.0	4 Vera WETABH	MAN ECL	W OF 822 E OF WETASOMN WU	0000	B040	000	120	1770 84	3.0	0			148	1	2	41.2	135.8	0111
818	1	C. WAR LOF BU	MAN EC L	WOF 622 S OF OWNINE EL	0000	ALC: L	0/111	100	1000	0.0	10	8 8		14.3	20	10	28.4	782	1048
	2	ALL STATES					1000	O CHEN					8	No.	100				
613		WETASH	WON ECT -	W OF 822 S OF OWNINE EJ			11.170	18	1099 34	2	0	3 62	12	14.3	10	1.9	28.4	78.2	1046
814	Ċ.	4 Wan EOF 41	N OF WADAMBOHT	WOF BM SW OF PARADISE VAL SU	0000	21.129	21 120	250	280 80	9	0	5 10	8	187	50	0.0	112	20.7	310
814	N.	EOF 41	N OF WAIMARGHT	WOF BUR SWOF PARADISE VAL SJ			21.129	550	280 80	5	0	5 10.	8	187	10	0.0	112	201	31.0
614		E OF 41 9	N OF WARWINGHT	W OF 894 SW OF PARADISE VAL SJ			21.129	250	280 80	3	0	5 10.3	8	187	1.0	6.0	51.2	20.7	31.0
616		A Ber EOF AM	DOO RO WOF BUCK CREEK	WOF 22 E OF BUCK CREEK	0000	3220	9.2.0	400	470 74	in	7.0	2 15		23.8	08	0.2	26.8	876	81.6
144		A Rea Eric 201	P OF BUCK CREEK	MUCTANE OF BIRS OFFICE	06.6 %	10.101	12 0.01	810	04 100					17.8	-	0	TUT	100	0.0
919	1 11	12 Blue EOF 281	E OF BUCK OREEK	WOF20 EOF BRETON	16.160	006 02	13 800	080	1040 84	1 00	10	14		12.0	47	22	30.7	48.2	180
618	9	E OF AM	OCO RD W OF BUCK CREEK	W OF 20 E OF BRETON			20.060	2	038 80	0	4	3 01	भा	15.6	00	24	547	48.5	83.2
818	4	4 Lade EOF 20 E	E OF BRETON	WOF 770 S OF WARRENED	0000	0600	0.600	8/2	840 81) (?) ()	4	2 105	4	151	12	12	37.0	31.0	0 88
818	(A	A Let ECF 700	PLOF WARRING	WOF 771 S OF SLAMVBROOK	0000	10.950	CHAND	100	A40 :70		10	CH: 1		15.7	24	00	112	20.8	80.8
918	in a	12 Lede ECF 771	S OF SUNAVBROOK	W OF TTHE OF ITABKANU	19.250	SC128	8.589	610	199	4	0.0	CL 0	-	107	10	9.0	20.7	13.9	34.0
818	4	EOF 20	E OF BRETON	WOF THE OF ITASKANU			27,738	650	718 812	4 30	1.0	4 10.4		141	67	3.0	30.2	22.5	127
818		4 Webs EOF 778	E OF ITASKA SJ	WOF780E OF MUHURST	0000	11 620	11520	740	850 87	1	9	5 7		107	31	10	231	23.8	48.0
618	-	8 Webs EOF 780	E OF MULHURST	WOF THE SWOF PRESTORE SU	11 520	10.680	8.160	1200	1980 66	1	0	8 8	6 0	114	95	11	395	48.5	0.58
618	æ	EOF 778	E OF ITASKA SJ	WOF 765 SWOF RPESTONE SJ			19 680	153	1070 80	E E	8	9 20	3	LH1-S	67	82	283	33.8	67.5
818	- 20	4. Vieta EOF 7/15	NW OF PIPESTONE NU	WOF 2 W OF MILET	0000	13880	13 880	1250	1410 80	- 40	0	9 55	5	102	62	3.0	20.8	48.4	782
610	-	8 West EOF 2 W	OF MILET	WOF 24 NOF MILET SJ	13 860	22507	8.607	1570	1720 80	1. 10	100	0 41	4	9.0	01	23	28.4	73.2	1016
818	95	E OF 745	INVIOR APESTONE NU	WOF 24 NOF MILET &L			22,507	1300	15.0 68	4	0	9 41	4	00	112	5	20.4	875	812
818	2	2 Leds EOF 247	N OF MILET NU	WOF BHANE OF MILLET	0000	5520	5520	350	370 86	10	0	7 . 81	3	135	07	0.3	197	14.1	27.8
818	-	4 Lede EOF 814	NE OF MILET	WOF 822 SW OF HAY LAKES	5.520	18.400	12,880	400	450 78	0	0.0	8 8	8 13.7	21.1	10	80	12.0	8.85	8.99
818	20	8 Carry EOF 822	SW OF HAY LAKES	RR 224	18.400	21600	3.200	500	250 78	5	1 2	2 01		206	02	10	7.0	105	27.4
818	105	10 Cana RR 224		S OF 21 W OF HAY LAKES	21800	26.608	14,008	200	280 83	1 0	4.1	9 8	5	18.5	10	05	7.5	13.0	21.4
818	2	EQF 24	N OF MULET NU	8 OF 21 WOF HAY LAKES			8098	58	24 80	5		6 1	ä	18.5	38	91	102	30.1	5.00
616		E OF AM	DCO RD W OF BUCK CREEK	8 OF 21 W OF HAY LAKES			135,500	156	848 24	8			1	131	87.3	17.6	25.6	37.6	63.2
817		4 Cante EOF 21	WOF HAY LANES	WOF 623 E OF HAY LAVES	0000	10410	10.410	700	700 86	5		4 4	-	113	27	Ţ.	13.6	30.2	52.6
110	4.9	A Cam EUTIGO	E OF HAY LANES	W CF 855 5W CF TURUNAN	10,410	and a	1000	141	TEN 0	0.0		n a	7 (Col.	1Z	4 :	197	18	1.7.0
110	* 0	12 CON CON CON	DAY OF NIXMEN	MOT SOL REPORT THOMAL THE	NY CL	10 2 10	28.910	- Die	24. 647	0 0	2 4	1 1		111	22	44	19.0	10.1	210
	in and a second			and an other statements for any statement of the statemen			Carlos Sol	1						Ser Se	i i		k	-	í.

MA 80:11 2102/12/2

Page 55 of 94

VC2011XIS

APPENDIX B

Total Traffic Volumes

APPENDIX C

Capacity Analysis

	۶	-	\mathbf{i}	4	-	*	1	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			ર્સ	1		ર્સ	1
Volume (vph)	152	109	118	28	51	80	37	383	46	32	282	21
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0	5.0		5.0	5.0
Lane Util. Factor		1.00			1.00			1.00	1.00		1.00	1.00
Frt		0.96			0.93			1.00	0.85		1.00	0.85
Flt Protected		0.98			0.99			1.00	1.00		0.99	1.00
Satd. Flow (prot)		1788			1618			1896	1436		1870	1619
Flt Permitted		0.81			0.90			0.95	1.00		0.93	1.00
Satd. Flow (perm)		1479			1472			1806	1436		1749	1619
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	165	118	128	30	55	87	40	416	50	35	307	23
RTOR Reduction (vph)	0	25	0	0	51	0	0	0	28	0	0	13
Lane Group Flow (vph)	0	386	0	0	121	0	0	456	22	0	342	10
Heavy Vehicles (%)	2%	2%	2%	15%	2%	15%	2%	2%	15%	15%	2%	2%
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2		2	6		6
Actuated Green, G (s)		28.0			28.0			29.0	29.0		29.0	29.0
Effective Green, g (s)		27.0			27.0			28.0	28.0		28.0	28.0
Actuated g/C Ratio		0.42			0.42			0.43	0.43		0.43	0.43
Clearance Time (s)		4.0			4.0			4.0	4.0		4.0	4.0
Lane Grp Cap (vph)		614			611			778	619		753	697
v/s Ratio Prot												
v/s Ratio Perm		c0.26			0.08			c0.25	0.02		0.20	0.01
v/c Ratio		0.63			0.20			0.59	0.03		0.45	0.01
Uniform Delay, d1		15.0			12.1			14.1	10.7		13.1	10.6
Progression Factor		1.00			1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2		4.8			0.7			3.2	0.1		2.0	0.0
Delay (s)		19.9			12.8			17.3	10.8		15.1	10.6
Level of Service		В			В			В	В		В	В
Approach Delay (s)		19.9			12.8			16.7			14.8	
Approach LOS		В			В			В			В	
Intersection Summary												
HCM Average Control Delay			16.6	Н	CM Level	of Servic	e		В			
HCM Volume to Capacity ratio			0.61									
Actuated Cycle Length (s)			65.0	S	um of los	t time (s)			10.0			
Intersection Capacity Utilization	1		86.0%	IC	CU Level of	of Service	;		E			
Analysis Period (min)			15									
c Critical Lane Group												

	≯	-	$\mathbf{\hat{z}}$	1	-	*	1	Ť	۲	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			र्स	1		ę	1
Volume (vph)	32	65	62	32	92	87	104	248	29	119	342	150
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0	5.0		5.0	5.0
Lane Util. Factor		1.00			1.00			1.00	1.00		1.00	1.00
Frt		0.95			0.94			1.00	0.85		1.00	0.85
Flt Protected		0.99			0.99			0.99	1.00		0.99	1.00
Satd. Flow (prot)		1787			1664			1876	1436		1820	1619
Flt Permitted		0.91			0.94			0.68	1.00		0.79	1.00
Satd. Flow (perm)		1643			1575			1291	1436		1452	1619
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	35	71	67	35	100	95	113	270	32	129	372	163
RTOR Reduction (vph)	0	35	0	0	39	0	0	0	16	0	0	80
Lane Group Flow (vph)	0	138	0	0	191	0	0	383	16	0	501	83
Heavy Vehicles (%)	2%	2%	2%	15%	2%	15%	2%	2%	15%	15%	2%	2%
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2		2	6		6
Actuated Green, G (s)		23.0			23.0			34.0	34.0		34.0	34.0
Effective Green, g (s)		22.0			22.0			33.0	33.0		33.0	33.0
Actuated g/C Ratio		0.34			0.34			0.51	0.51		0.51	0.51
Clearance Time (s)		4.0			4.0			4.0	4.0		4.0	4.0
Lane Grp Cap (vph)		556			533			655	729		737	822
v/s Ratio Prot												
v/s Ratio Perm		0.08			c0.12			0.30	0.01		c0.35	0.05
v/c Ratio		0.25			0.36			0.58	0.02		0.68	0.10
Uniform Delay, d1		15.5			16.2			11.2	8.0		12.0	8.3
Progression Factor		1.00			1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2		1.1			1.9			3.8	0.1		5.0	0.2
Delay (s)		16.6			18.1			15.0	8.0		17.0	8.5
Level of Service		В			В			В	Α		В	Α
Approach Delay (s)		16.6			18.1			14.5			15.0	
Approach LOS		В			В			В			В	
Intersection Summary												
HCM Average Control Delay			15.5	Н	CM Level	of Servic	e		В			
HCM Volume to Capacity ratio			0.55									
Actuated Cycle Length (s)			65.0	S	um of lost	time (s)			10.0			
Intersection Capacity Utilizatio	n		70.6%	IC	CU Level o	of Service	;		С			
Analysis Period (min)			15									
c Critical Lane Group												

	≯	-	\mathbf{i}	1	+	*	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4			र्स	1		र्स	7
Volume (vph)	195	121	153	34	62	97	48	458	51	35	336	27
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0			4.0	4.0		4.5	4.5
Lane Util. Factor		1.00			1.00			1.00	1.00		1.00	1.00
Frt		0.96			0.93			1.00	0.85		1.00	0.85
Flt Protected		0.98			0.99			1.00	1.00		1.00	1.00
Satd. Flow (prot)		1783			1619			1895	1436		1873	1619
Flt Permitted		0.77			0.89			0.94	1.00		0.90	1.00
Satd. Flow (perm)		1404			1456			1781	1436		1686	1619
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	212	132	166	37	67	105	52	498	55	38	365	29
RTOR Reduction (vph)	0	27	0	0	56	0	0	0	30	0	0	16
Lane Group Flow (vph)	0	483	0	0	153	0	0	550	25	0	403	13
Heavy Vehicles (%)	2%	2%	2%	15%	2%	15%	2%	2%	15%	15%	2%	2%
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2		2	6		6
Actuated Green, G (s)		27.0			27.0			30.0	30.0		29.5	29.5
Effective Green, g (s)		27.0			27.0			30.0	30.0		29.5	29.5
Actuated g/C Ratio		0.42			0.42			0.46	0.46		0.45	0.45
Clearance Time (s)		4.0			4.0			4.0	4.0		4.5	4.5
Lane Grp Cap (vph)		583			605			822	663		765	735
v/s Ratio Prot												
v/s Ratio Perm		c0.34			0.10			c0.31	0.02		0.24	0.01
v/c Ratio		0.83			0.25			0.67	0.04		0.53	0.02
Uniform Delay, d1		16.9			12.4			13.6	9.6		12.7	9.8
Progression Factor		1.00			1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2		12.8			1.0			4.3	0.1		2.6	0.0
Delay (s)		29.7			13.4			17.9	9.7		15.3	9.8
Level of Service		С			В			В	A		В	A
Approach Delay (s)		29.7			13.4			17.2			15.0	
Approach LOS		С			В			В			В	
Intersection Summary												
HCM Average Control Delay			19.8	Н	ICM Leve	l of Servic	e		В			
HCM Volume to Capacity ratio			0.74									
Actuated Cycle Length (s)			65.0	S	um of los	t time (s)			8.0			
Intersection Capacity Utilization			97.7%	IC	CU Level	of Service	•		F			
Analysis Period (min)			15									
c Critical Lane Group												

	≯	-	\mathbf{r}	1	-	*	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			र्स	1		स्	7
Volume (vph)	42	81	78	36	104	98	133	298	35	146	408	192
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0	5.0		5.0	5.0
Lane Util. Factor		1.00			1.00			1.00	1.00		1.00	1.00
Frt		0.95			0.94			1.00	0.85		1.00	0.85
Flt Protected		0.99			0.99			0.98	1.00		0.99	1.00
Satd. Flow (prot)		1786			1665			1875	1436		1818	1619
Flt Permitted		0.90			0.93			0.55	1.00		0.69	1.00
Satd. Flow (perm)		1630			1557			1051	1436		1263	1619
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	46	88	85	39	113	107	145	324	38	159	443	209
RTOR Reduction (vph)	0	35	0	0	39	0	0	0	18	0	0	96
Lane Group Flow (vph)	0	184	0	0	220	0	0	469	20	0	602	113
Heavy Vehicles (%)	2%	2%	2%	15%	2%	15%	2%	2%	15%	15%	2%	2%
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2		2	6		6
Actuated Green, G (s)		21.0			21.0			36.0	36.0		36.0	36.0
Effective Green, g (s)		20.0			20.0			35.0	35.0		35.0	35.0
Actuated g/C Ratio		0.31			0.31			0.54	0.54		0.54	0.54
Clearance Time (s)		4.0			4.0			4.0	4.0		4.0	4.0
Lane Grp Cap (vph)		502			479			566	773		680	872
v/s Ratio Prot												
v/s Ratio Perm		0.11			c0.14			0.45	0.01		c0.48	0.07
v/c Ratio		0.37			0.46			0.83	0.03		0.89	0.13
Uniform Delay, d1		17.6			18.1			12.5	7.0		13.2	7.4
Progression Factor		1.00			1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2		2.1			3.2			13.1	0.1		15.7	0.3
Delay (s)		19.6			21.3			25.6	7.1		28.9	7.7
Level of Service		В			С			С	А		С	Α
Approach Delay (s)		19.6			21.3			24.2			23.4	
Approach LOS		В			С			С			С	
Intersection Summary												
HCM Average Control Delay			22.9	Н	CM Level	l of Servic	e		С			
HCM Volume to Capacity ratio			0.73									
Actuated Cycle Length (s)			65.0	S	um of lost	t time (s)			10.0			
Intersection Capacity Utilization	n		82.2%	IC	CU Level of	of Service	9		E			
Analysis Period (min)			15									
c Critical Lane Group												

	-	\rightarrow	1	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĥ			ۍ ۲	M	
Volume (veh/h)	69	118	6	120	39	2
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	75	128	7	130	42	2
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			203		283	139
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			203		283	139
tC, single (s)			4.1		6.5	6.4
tC, 2 stage (s)						
tF (s)			2.2		3.6	3.4
p0 queue free %			100		94	100
cM capacity (veh/h)			1368		677	876
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	203	137	45			
Volume Left	0	7	42			
Volume Right	128	0	2			
cSH	1700	1368	685			
Volume to Capacity	0.12	0.00	0.07			
Queue Length 95th (m)	0.0	0.1	1.6			
Control Delay (s)	0.0	0.4	10.6			
Lane LOS		А	В			
Approach Delay (s)	0.0	0.4	10.6			
Approach LOS			В			
Intersection Summary						
Average Delay			1.4			
Intersection Capacity Utilizat	ion		21.2%	IC	U Level c	f Service
Analysis Period (min)			15			

	→	\rightarrow	-	-	▲	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f,			ર્સ	۲	
Volume (veh/h)	171	45	2	93	118	7
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	186	49	2	101	128	8
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			235		316	210
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			235		316	210
tC, single (s)			4.1		6.5	6.4
tC, 2 stage (s)						
tF (s)			2.2		3.6	3.4
p0 queue free %			100		80	99
cM capacity (veh/h)			1333		650	798
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	235	103	136			
Volume Left	0	2	128			
Volume Right	49	0	8			
cSH	1700	1333	657			
Volume to Capacity	0.14	0.00	0.21			
Queue Length 95th (m)	0.0	0.0	5.9			
Control Delay (s)	0.0	0.2	11.9			
Lane LOS		А	В			
Approach Delay (s)	0.0	0.2	11.9			
Approach LOS			В			
Intersection Summary						
Average Delay			3.5			
Intersection Capacity Utilization	n		25.4%	IC	ULevelo	of Service
Analysis Period (min)			15	.0	0.0.0	

	-	\rightarrow	-	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4Î			ર્સ	۲	
Volume (veh/h)	89	118	6	154	39	2
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	97	128	7	167	42	2
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			225		341	161
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			225		341	161
tC, single (s)			4.1		6.5	6.4
tC, 2 stage (s)						
tF (s)			2.2		3.6	3.4
p0 queue free %			100		93	100
cM capacity (veh/h)			1344		626	851
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	225	174	45			
Volume Left	0	7	42			
Volume Right	128	0	2			
cSH	1700	1344	634			
Volume to Capacity	0.13	0.00	0.07			
Queue Length 95th (m)	0.0	0.1	1.7			
Control Delay (s)	0.0	0.3	11.1			
Lane LOS		А	В			
Approach Delay (s)	0.0	0.3	11.1			
Approach LOS			В			
Intersection Summary						
Average Delav			1.2			
Intersection Capacity Utilizat	tion		23.0%	IC	U Level d	of Service
Analysis Period (min)			15			

MovementEBTEBRWBLWBTNBLNBRLane ConfigurationsImage: stress of the stress
Lane Configurations Image: Configuration of the system Image: Con
Volume (veh/h) 217 45 2 120 118 7 Sign Control Free Free Stop Grade 0%
Sign Control Free Free Stop Grade 0% 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 236 49 2 130 128 8 Pedestrians
Grade 0% 0% 0% Peak Hour Factor 0.92
Peak Hour Factor 0.92
Hourly flow rate (vph) 236 49 2 130 128 8 Pedestrians
Pedestrians
Lane Width (m)
Walking Speed (m/s)
Percent Blockage
Right turn flare (veh)
Median type None None
Median storage veh)
Upstream signal (m)
pX, platoon unblocked
vC, conflicting volume 285 395 260
vC1, stage 1 conf vol
vC2, stage 2 conf vol
vCu, unblocked vol 285 395 260
tC, single (s) 4.1 6.5 6.4
tC, 2 stage (s)
tF (s) 2.2 3.6 3.4
p0 queue free % 100 78 99
cM capacity (veh/h) 1277 584 748
Direction, Lane # EB 1 WB 1 NB 1
Volume Total 285 133 136
Volume Left 0 2 128
Volume Right 49 0 8
cSH 1700 1277 592
Volume to Capacity 0.17 0.00 0.23
Queue Length 95th (m) 0.0 0.0 6.7
Control Delay (s) 0.0 0.1 12.9
Lane LOS A B
Approach Delay (s) 0.0 0.1 12.9
Approach LOS B
Intersection Summary
Average Delay 3.2
Intersection Capacity Utilization 27.8% ICU Level of Service
Analysis Period (min) 15

APPENDIX D

Site Plans and Area Structural Plans

(SHIPWAY OCT 5\TA INFO\NEW LAST RECORDS asbuilt drawing shipway_Sep 18.dwg − Oct 09 2015.

₹

5: 26pr

		<u>ு</u>	
		S.S.	
		G.H.	
		A.S	
			TSJ. 50 75J.00 7
			753.00 753.00 753.00 753.00 753.00 755.00
			753.50 753.20 753.20 753.20 753.20 755.20
			754.25 THE
			754.50 754.50 754.50 754.75
			ETT Start St
APPR(DATE DESIG DRAW CHECI	SCALE	753.00 752.50 752.50 752.50
OVED	15 : NED		754.25 754.25 754.25
G.W.	R.S R.S A.A.S	1:200	0 5 ⁵ 5 ⁴ 5 ⁴ 5 ⁴ 5 ⁴ 5 ⁴ 5 ⁵ 758.5 ⁵ 7
		00	00 ^{-ySL} 0 ^{5^{-ySL} 0^{5^{-ySL} 0^{5^{-ySL} 0^{5^{-ySL}} 0^{5^{-ySL} 0^{5^{-ySL}} 0^{5^{-ySL} 0^{5^{-ySL}} 0^{5^{-ySL}} 0^{5^{-ySL}} 0^{5^{-ySL} 0^{5^{-ySL}}}}}}}}
1	R R R		
5	AWING		
53	NUMBE	MIE	
	<u>م</u>		

15-09-2015	HIPWAY STORWATER MA PROPO: COUNTY OI	2			
DWG. NO. WETASKIWIN 15-09-2015 Sherwood Park, Ab, T8A-5k8 Tel: 780-554-9442/Fax:780-410-0984	NAGEMENT N.W. ¹ / ₄ SEC.,28-47-24-W4M SED GRADING PLAN F WETASKIWIN , ALBERTA		DESIGN ELEV COMPACTED GRAVEL SUBGRADE COMPACTED SUBGRADE COMPACTED DI BORADE COMPACTED OLI BO	NOTES: DIMENSIONS ARE IN METERS AND DECIMALS THEREOF. ALL DIMENSIONS AND AREAS ARE APPROXIMATE AND ARE TO BE CONFIRMED BY PLAN OF SURVEY. THE CONFIRMED BY PLAN OF SURVEY. AND SEDIMENTATION CONTROL CUIDELINES. AREA CONSULTING INC HAS COMPLETED THE ONSITE DRAINAGE DESIGN BASED ON SURVEY INFORMATION PROVIDED BY OTHER. AREA CONSULTING INC ASSUMES NO RESPONSIBILITY FOR THE PAVEMENT STRUCTURE. THE CONTRACTOR IS RESPONSIBLE FOR LOCATING AND PROTECTING ALL EXISTING UTILITIES, WHETHER SHOWN ON THESE DRAWINGS OR NOT, AT NO EXTRA COST TO THE OWNER. THE LOCATIONS AND EXISTENCE OF UTILITES SHOWN ON THESE DRAWINGS IS APPROXIMATE ONLY.	Copyright The Contractor sholl verify and be responsible for all dimensions. DO NUL scale for downing - any entrus or annisation sholl be responsed to NUL scale and verify and be responsible for all dimensions. DO NUL scale and verify and be responsible for all dimensions. DO NUL scale and verify and be responsible for all dimensions. DO NUL scale and verify and be responsible for all dimensions. DO NUL scale and verify and be responsible for all dimensions. DO NUL scale and verify and be responsible for all dimensions. DO NUL scale and verify and be responsible for all dimensions. DO NUL scale and verify and be responsible for all dimensions. DO NUL scale and verify and be responsible for all dimensions. DO NUL scale and verify and be responsible for all dimensions. DO NUL scale and verify and be responsible for all dimensions. DO NUL scale and verify and be responsible for all dimensions. DO NUL scale and verify and be responsible for all dimensions. DO NUL scale and verify and be responsible for all dimensions. DO NUL scale and verify and be responsible for all dimensions. DO NUL scale and verify and be responsible for all dimensions. DO NUL scale and verify and be responsed before scale and verify a